Lyapunov函数搜索法用于非线性系统稳定性分析的遗传算法

A.M. Zenkin, A.A. Peregudin, A.A. Bobtsov
{"title":"Lyapunov函数搜索法用于非线性系统稳定性分析的遗传算法","authors":"A.M. Zenkin, A.A. Peregudin, A.A. Bobtsov","doi":"10.17586/2226-1494-2023-23-5-886-893","DOIUrl":null,"url":null,"abstract":"A wide class of smooth continuous dynamic nonlinear systems (control objects) with a measurable state vector is considered. The problem of finding a special function (Lyapunov function), which guarantees asymptotic stability for the presented class of nonlinear systems in the framework of the second Lyapunov method, is posed. It is known that the search for the Lyapunov function is an extremely difficult problem that has no universal solution in stability theory. The methods of selection or search of the Lyapunov function for stability analysis of closed linear stationary systems and for nonlinear objects with explicitly expressed linear dynamical and nonlinear static parts are well studied. At the same time, no universal approaches to finding the Lyapunov function for a more general class of nonlinear systems have been identified. In this paper, we propose a new approach to the search of the Lyapunov function for analyzing the stability of smooth continuous dynamic nonlinear systems with a measurable state vector. The essence of the proposed approach consists in the representation of some function through the sum of nonlinear summands representing the elements of the object state vector multiplied by unknown coefficients. The search for these coefficients is performed using a classical genetic algorithm including mutation, selection, and crossover operations. The found coefficients provide all the necessary conditions for the Lyapunov function (within the framework of the second Lyapunov method). The genetic algorithm approach does not require a training sample which imposes restrictions in the form of the structure of control objects included in it. A new method for finding the Lyapunov function represented as a nonlinear series with known functions multiplied by unknown coefficients is proposed. The effectiveness of the proposed method is demonstrated using computer simulations with a fixed number of iterations and varying population size. The dependence of the number of successfully found Lyapunov functions on the number of iterations of the genetic algorithm has been established. The convergence of the genetic algorithm using Holland’s schemes is analyzed. It is shown that the values of the sought coefficients of the potential Lyapunov function, at each algorithm iteration, approach the coefficients of the Lyapunov function which was also represented as a Taylor series. The method proposed in this paper outperforms known analogs in terms of speed, considers the decomposition of the potential Lyapunov function into a Taylor series with unknown coefficients, instead of using counterexamples or template functions.","PeriodicalId":21700,"journal":{"name":"Scientific and Technical Journal of Information Technologies, Mechanics and Optics","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lyapunov function search method for analysis of nonlinear systems stability using genetic algorithm\",\"authors\":\"A.M. Zenkin, A.A. Peregudin, A.A. Bobtsov\",\"doi\":\"10.17586/2226-1494-2023-23-5-886-893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A wide class of smooth continuous dynamic nonlinear systems (control objects) with a measurable state vector is considered. The problem of finding a special function (Lyapunov function), which guarantees asymptotic stability for the presented class of nonlinear systems in the framework of the second Lyapunov method, is posed. It is known that the search for the Lyapunov function is an extremely difficult problem that has no universal solution in stability theory. The methods of selection or search of the Lyapunov function for stability analysis of closed linear stationary systems and for nonlinear objects with explicitly expressed linear dynamical and nonlinear static parts are well studied. At the same time, no universal approaches to finding the Lyapunov function for a more general class of nonlinear systems have been identified. In this paper, we propose a new approach to the search of the Lyapunov function for analyzing the stability of smooth continuous dynamic nonlinear systems with a measurable state vector. The essence of the proposed approach consists in the representation of some function through the sum of nonlinear summands representing the elements of the object state vector multiplied by unknown coefficients. The search for these coefficients is performed using a classical genetic algorithm including mutation, selection, and crossover operations. The found coefficients provide all the necessary conditions for the Lyapunov function (within the framework of the second Lyapunov method). The genetic algorithm approach does not require a training sample which imposes restrictions in the form of the structure of control objects included in it. A new method for finding the Lyapunov function represented as a nonlinear series with known functions multiplied by unknown coefficients is proposed. The effectiveness of the proposed method is demonstrated using computer simulations with a fixed number of iterations and varying population size. The dependence of the number of successfully found Lyapunov functions on the number of iterations of the genetic algorithm has been established. The convergence of the genetic algorithm using Holland’s schemes is analyzed. It is shown that the values of the sought coefficients of the potential Lyapunov function, at each algorithm iteration, approach the coefficients of the Lyapunov function which was also represented as a Taylor series. The method proposed in this paper outperforms known analogs in terms of speed, considers the decomposition of the potential Lyapunov function into a Taylor series with unknown coefficients, instead of using counterexamples or template functions.\",\"PeriodicalId\":21700,\"journal\":{\"name\":\"Scientific and Technical Journal of Information Technologies, Mechanics and Optics\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific and Technical Journal of Information Technologies, Mechanics and Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17586/2226-1494-2023-23-5-886-893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific and Technical Journal of Information Technologies, Mechanics and Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17586/2226-1494-2023-23-5-886-893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

考虑一类具有可测量状态向量的光滑连续动态非线性系统(控制对象)。给出了在第二类李雅普诺夫方法框架下求一类非线性系统渐近稳定的特殊函数(李雅普诺夫函数)的问题。在稳定性理论中,李雅普诺夫函数的求解是一个没有普遍解的极其困难的问题。研究了封闭线性平稳系统和具有明确表示的线性动态部分和非线性静态部分的非线性对象的稳定性分析的李雅普诺夫函数的选择或搜索方法。与此同时,对于一类更一般的非线性系统,还没有找到寻找李雅普诺夫函数的通用方法。本文提出了一种新的搜索Lyapunov函数的方法,用于分析具有可测状态向量的光滑连续动态非线性系统的稳定性。该方法的本质在于通过表示对象状态向量的元素乘以未知系数的非线性求和来表示某些函数。对这些系数的搜索使用经典的遗传算法执行,包括突变、选择和交叉操作。所发现的系数提供了Lyapunov函数的所有必要条件(在第二个Lyapunov方法的框架内)。遗传算法方法不需要训练样本,而训练样本会以其中包含的控制对象的结构形式施加限制。提出了一种求解Lyapunov函数的新方法,该函数表示为已知函数乘以未知系数的非线性级数。通过固定迭代次数和不同种群规模的计算机仿真验证了该方法的有效性。建立了成功找到的李雅普诺夫函数的个数与遗传算法迭代次数的关系。分析了采用Holland格式的遗传算法的收敛性。结果表明,在每次算法迭代中,所求的潜在Lyapunov函数的系数值接近Lyapunov函数的系数,Lyapunov函数也表示为泰勒级数。本文提出的方法在速度方面优于已知的类似方法,考虑将潜在的Lyapunov函数分解为具有未知系数的泰勒级数,而不是使用反例或模板函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lyapunov function search method for analysis of nonlinear systems stability using genetic algorithm
A wide class of smooth continuous dynamic nonlinear systems (control objects) with a measurable state vector is considered. The problem of finding a special function (Lyapunov function), which guarantees asymptotic stability for the presented class of nonlinear systems in the framework of the second Lyapunov method, is posed. It is known that the search for the Lyapunov function is an extremely difficult problem that has no universal solution in stability theory. The methods of selection or search of the Lyapunov function for stability analysis of closed linear stationary systems and for nonlinear objects with explicitly expressed linear dynamical and nonlinear static parts are well studied. At the same time, no universal approaches to finding the Lyapunov function for a more general class of nonlinear systems have been identified. In this paper, we propose a new approach to the search of the Lyapunov function for analyzing the stability of smooth continuous dynamic nonlinear systems with a measurable state vector. The essence of the proposed approach consists in the representation of some function through the sum of nonlinear summands representing the elements of the object state vector multiplied by unknown coefficients. The search for these coefficients is performed using a classical genetic algorithm including mutation, selection, and crossover operations. The found coefficients provide all the necessary conditions for the Lyapunov function (within the framework of the second Lyapunov method). The genetic algorithm approach does not require a training sample which imposes restrictions in the form of the structure of control objects included in it. A new method for finding the Lyapunov function represented as a nonlinear series with known functions multiplied by unknown coefficients is proposed. The effectiveness of the proposed method is demonstrated using computer simulations with a fixed number of iterations and varying population size. The dependence of the number of successfully found Lyapunov functions on the number of iterations of the genetic algorithm has been established. The convergence of the genetic algorithm using Holland’s schemes is analyzed. It is shown that the values of the sought coefficients of the potential Lyapunov function, at each algorithm iteration, approach the coefficients of the Lyapunov function which was also represented as a Taylor series. The method proposed in this paper outperforms known analogs in terms of speed, considers the decomposition of the potential Lyapunov function into a Taylor series with unknown coefficients, instead of using counterexamples or template functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
102
审稿时长
8 weeks
期刊最新文献
Homograph recognition algorithm based on Euclidean metric Deep attention based Proto-oncogene prediction and Oncogene transition possibility detection using moments and position based amino acid features Structural and spectral properties of YAG:Nd, YAG:Ce and YAG:Yb nanocrystalline powders synthesized via modified Pechini method Laser-induced thermal effect on the electrical characteristics of photosensitive PbSe films An improved performance of RetinaNet model for hand-gun detection in custom dataset and real time surveillance video
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1