近空间科学实验系统中、近紫外光谱仪(SENSE)

IF 2.9 3区 地球科学 Earth and Planetary Physics Pub Date : 2023-01-01 DOI:10.26464/epp2023081
Xin Sun, DaLian Shi, Zhen Chen, Ran Li, WeiWei Cao, Jun Zhu, YongLin Bai, Le Wang, and Fei He
{"title":"近空间科学实验系统中、近紫外光谱仪(SENSE)","authors":"Xin Sun, DaLian Shi, Zhen Chen, Ran Li, WeiWei Cao, Jun Zhu, YongLin Bai, Le Wang, and Fei He","doi":"10.26464/epp2023081","DOIUrl":null,"url":null,"abstract":"The Scientific Experimental system in Near SpacE (SENSE) consists of different types of instruments that will be installed on a balloon-based platform to characterize near-space environmental parameters. As one of the main scientific payloads, the middle and near ultraviolet spectrograph (MN-UVS) will provide full spectra coverage from middle ultraviolet (MUV, 200 nm-300 nm) to near ultraviolet (NUV, 300 nm-400 nm) with a spectral resolution of 2 nm. Its primary mission is to acquire data regarding the UV radiation background of the upper atmosphere. The MN-UVS is made up of six primary components: a fore-optical module, an imaging grating module, a UV intensified focal plane module, a titanium alloy frame, a spectrometer control module, and a data processing module. This paper presents in detail the engineering design of each functional unit of the MN-UVS, as well as the instrument’s radiometric calibration, wavelength calibration, impact test, and low-pressure discharge test. Furthermore, we are able to report ground test and flight test results of high quality, showing that the MN-UVS has a promising future in upcoming near-space applications.","PeriodicalId":45246,"journal":{"name":"Earth and Planetary Physics","volume":"390 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Middle and near ultraviolet spectrograph of the Scientific Experimental system in Near SpacE (SENSE)\",\"authors\":\"Xin Sun, DaLian Shi, Zhen Chen, Ran Li, WeiWei Cao, Jun Zhu, YongLin Bai, Le Wang, and Fei He\",\"doi\":\"10.26464/epp2023081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Scientific Experimental system in Near SpacE (SENSE) consists of different types of instruments that will be installed on a balloon-based platform to characterize near-space environmental parameters. As one of the main scientific payloads, the middle and near ultraviolet spectrograph (MN-UVS) will provide full spectra coverage from middle ultraviolet (MUV, 200 nm-300 nm) to near ultraviolet (NUV, 300 nm-400 nm) with a spectral resolution of 2 nm. Its primary mission is to acquire data regarding the UV radiation background of the upper atmosphere. The MN-UVS is made up of six primary components: a fore-optical module, an imaging grating module, a UV intensified focal plane module, a titanium alloy frame, a spectrometer control module, and a data processing module. This paper presents in detail the engineering design of each functional unit of the MN-UVS, as well as the instrument’s radiometric calibration, wavelength calibration, impact test, and low-pressure discharge test. Furthermore, we are able to report ground test and flight test results of high quality, showing that the MN-UVS has a promising future in upcoming near-space applications.\",\"PeriodicalId\":45246,\"journal\":{\"name\":\"Earth and Planetary Physics\",\"volume\":\"390 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Planetary Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26464/epp2023081\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26464/epp2023081","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近空间科学实验系统(SENSE)由不同类型的仪器组成,这些仪器将安装在一个基于气球的平台上,以表征近空间环境参数。作为主要的科学载荷之一,中紫外和近紫外光谱仪(MN-UVS)将提供从中紫外(MUV, 200 nm-300 nm)到近紫外(NUV, 300 nm-400 nm)的全光谱覆盖,光谱分辨率为2 nm。它的主要任务是获取有关高层大气紫外线辐射背景的数据。MN-UVS由六个主要部件组成:前光模块、成像光栅模块、UV增强焦平面模块、钛合金框架、光谱仪控制模块和数据处理模块。本文详细介绍了MN-UVS各功能单元的工程设计,以及仪器的辐射定标、波长定标、冲击试验和低压放电试验。此外,我们能够报告高质量的地面测试和飞行测试结果,表明MN-UVS在即将到来的近空间应用中具有广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Middle and near ultraviolet spectrograph of the Scientific Experimental system in Near SpacE (SENSE)
The Scientific Experimental system in Near SpacE (SENSE) consists of different types of instruments that will be installed on a balloon-based platform to characterize near-space environmental parameters. As one of the main scientific payloads, the middle and near ultraviolet spectrograph (MN-UVS) will provide full spectra coverage from middle ultraviolet (MUV, 200 nm-300 nm) to near ultraviolet (NUV, 300 nm-400 nm) with a spectral resolution of 2 nm. Its primary mission is to acquire data regarding the UV radiation background of the upper atmosphere. The MN-UVS is made up of six primary components: a fore-optical module, an imaging grating module, a UV intensified focal plane module, a titanium alloy frame, a spectrometer control module, and a data processing module. This paper presents in detail the engineering design of each functional unit of the MN-UVS, as well as the instrument’s radiometric calibration, wavelength calibration, impact test, and low-pressure discharge test. Furthermore, we are able to report ground test and flight test results of high quality, showing that the MN-UVS has a promising future in upcoming near-space applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth and Planetary Physics
Earth and Planetary Physics GEOSCIENCES, MULTIDISCIPLINARY-
自引率
17.20%
发文量
174
期刊最新文献
A data assimilation-based forecast model of outer radiation belt electron fluxes Direct evidence for efficient scattering of suprathermal electrons by whistler mode waves in the Martian magnetosphere Scalings for the Alfvén-cyclotron instability in a bi-kappa plasma Mesopause temperatures and relative densities at midlatitudes observed by the Mengcheng meteor radar Large-scale inverted-V channels of upflowing oxygen ions pumped by Alfvén waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1