空间点模式非凸窗口的协变量构造

IF 0.4 Q4 STATISTICS & PROBABILITY SOUTH AFRICAN STATISTICAL JOURNAL Pub Date : 2023-01-01 DOI:10.37920/sasj.2023.57.2.1
Kabelo Mahloromela, Inger Fabris-Rotelli, Christine Kraamwinkel
{"title":"空间点模式非凸窗口的协变量构造","authors":"Kabelo Mahloromela, Inger Fabris-Rotelli, Christine Kraamwinkel","doi":"10.37920/sasj.2023.57.2.1","DOIUrl":null,"url":null,"abstract":"In some standard applications of spatial point pattern analysis, window selection for spatial point pattern data is complex. Often, the point pattern window is given a priori. Otherwise, the region is chosen using some objective means reflecting a view that the window may be representative of a larger region. The typical approaches used are the smallest rectangular bounding window and convex windows. The chosen window should however cover the true domain of the point process since it defines the domain for point pattern analysis and supports estimation and inference. Choosing too large a window results in spurious estimation and inference in regions of the window where points cannot occur. We propose a new algorithm for selecting the point pattern domain based on spatial covariate information and without the restriction of convexity, allowing for better estimation of the true domain. Amodified kernel smoothed intensity estimate that uses the Euclidean shortest path distance is proposed as validation of the algorithm. The proposed algorithm is applied in the setting of rural villages in Tanzania. As a spatial covariate, remotely sensed elevation data is used. The algorithm is able to detect and filter out high relief areas and steep slopes; observed characteristics that make the occurrence of a household in these regions improbable. Keywords: Covariate, Euclidean shortest path, Nonconvex, Spatial point pattern, Window selection","PeriodicalId":53997,"journal":{"name":"SOUTH AFRICAN STATISTICAL JOURNAL","volume":"389 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covariate construction of nonconvex windows for spatial point patterns\",\"authors\":\"Kabelo Mahloromela, Inger Fabris-Rotelli, Christine Kraamwinkel\",\"doi\":\"10.37920/sasj.2023.57.2.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In some standard applications of spatial point pattern analysis, window selection for spatial point pattern data is complex. Often, the point pattern window is given a priori. Otherwise, the region is chosen using some objective means reflecting a view that the window may be representative of a larger region. The typical approaches used are the smallest rectangular bounding window and convex windows. The chosen window should however cover the true domain of the point process since it defines the domain for point pattern analysis and supports estimation and inference. Choosing too large a window results in spurious estimation and inference in regions of the window where points cannot occur. We propose a new algorithm for selecting the point pattern domain based on spatial covariate information and without the restriction of convexity, allowing for better estimation of the true domain. Amodified kernel smoothed intensity estimate that uses the Euclidean shortest path distance is proposed as validation of the algorithm. The proposed algorithm is applied in the setting of rural villages in Tanzania. As a spatial covariate, remotely sensed elevation data is used. The algorithm is able to detect and filter out high relief areas and steep slopes; observed characteristics that make the occurrence of a household in these regions improbable. Keywords: Covariate, Euclidean shortest path, Nonconvex, Spatial point pattern, Window selection\",\"PeriodicalId\":53997,\"journal\":{\"name\":\"SOUTH AFRICAN STATISTICAL JOURNAL\",\"volume\":\"389 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SOUTH AFRICAN STATISTICAL JOURNAL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37920/sasj.2023.57.2.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SOUTH AFRICAN STATISTICAL JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37920/sasj.2023.57.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在一些标准的空间点图分析应用中,空间点图数据的窗口选择是复杂的。通常,点模式窗口是先验的。否则,使用一些客观的方法来选择区域,以反映窗口可能代表更大区域的观点。使用的典型方法是最小的矩形边界窗口和凸窗口。然而,选择的窗口应该覆盖点过程的真正域,因为它定义了点模式分析的域,并支持估计和推理。选择太大的窗口会导致窗口中不可能出现点的区域出现虚假估计和推断。我们提出了一种新的基于空间协变量信息的点模式域选择算法,该算法不受凸性的限制,可以更好地估计真域。提出了利用欧几里得最短路径距离的改进核平滑强度估计作为算法的验证。将该算法应用于坦桑尼亚农村环境中。作为空间协变量,使用遥感高程数据。该算法能够检测并滤除高起伏区域和陡坡;在这些地区不可能出现一个家庭的观察特征。关键词:协变量,欧氏最短路径,非凸,空间点模式,窗口选择
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Covariate construction of nonconvex windows for spatial point patterns
In some standard applications of spatial point pattern analysis, window selection for spatial point pattern data is complex. Often, the point pattern window is given a priori. Otherwise, the region is chosen using some objective means reflecting a view that the window may be representative of a larger region. The typical approaches used are the smallest rectangular bounding window and convex windows. The chosen window should however cover the true domain of the point process since it defines the domain for point pattern analysis and supports estimation and inference. Choosing too large a window results in spurious estimation and inference in regions of the window where points cannot occur. We propose a new algorithm for selecting the point pattern domain based on spatial covariate information and without the restriction of convexity, allowing for better estimation of the true domain. Amodified kernel smoothed intensity estimate that uses the Euclidean shortest path distance is proposed as validation of the algorithm. The proposed algorithm is applied in the setting of rural villages in Tanzania. As a spatial covariate, remotely sensed elevation data is used. The algorithm is able to detect and filter out high relief areas and steep slopes; observed characteristics that make the occurrence of a household in these regions improbable. Keywords: Covariate, Euclidean shortest path, Nonconvex, Spatial point pattern, Window selection
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SOUTH AFRICAN STATISTICAL JOURNAL
SOUTH AFRICAN STATISTICAL JOURNAL STATISTICS & PROBABILITY-
CiteScore
0.30
自引率
0.00%
发文量
18
期刊介绍: The journal will publish innovative contributions to the theory and application of statistics. Authoritative review articles on topics of general interest which are not readily accessible in a coherent form, will be also be considered for publication. Articles on applications or of a general nature will be published in separate sections and an author should indicate which of these sections an article is intended for. An applications article should normally consist of the analysis of actual data and need not necessarily contain new theory. The data should be made available with the article but need not necessarily be part of it.
期刊最新文献
An automated exact solution framework towards solving the logistic regression best subset selection problem Covariate construction of nonconvex windows for spatial point patterns Time-variant nonparametric extreme quantile estimation with application to US temperature data On the variance and skewness of the swap rate in a stochastic volatility interest rate model Advantages of using factorisation machines as a statistical modelling technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1