Nicolas Sommet, David L. Weissman, Nicolas Cheutin, Andrew J. Elliot
{"title":"我需要多少参与者来测试一个交互?进行适当的功率分析并获得足够的功率来检测相互作用","authors":"Nicolas Sommet, David L. Weissman, Nicolas Cheutin, Andrew J. Elliot","doi":"10.1177/25152459231178728","DOIUrl":null,"url":null,"abstract":"Power analysis for first-order interactions poses two challenges: (a) Conducting an appropriate power analysis is difficult because the typical expected effect size of an interaction depends on its shape, and (b) achieving sufficient power is difficult because interactions are often modest in size. This article consists of three parts. In the first part, we address the first challenge. We first use a fictional study to explain the difference between power analyses for interactions and main effects. Then, we introduce an intuitive taxonomy of 12 types of interactions based on the shape of the interaction (reversed, fully attenuated, partially attenuated) and the size of the simple slopes (median, smaller, larger), and we offer mathematically derived sample-size recommendations to detect each interaction with a power of .80/.90/.95 (for two-tailed tests in between-participants designs). In the second part, we address the second challenge. We first describe a preregistered metastudy (159 studies from recent articles in influential psychology journals) showing that the median power to detect interactions of a typical size is .18. Then, we use simulations (≈900,000,000 data sets) to generate power curves for the 12 types of interactions and test three approaches to increase power without increasing sample size: (a) preregistering one-tailed tests (+21% gain), (b) using a mixed design (+75% gain), and (c) preregistering contrast analysis for a fully attenuated interaction (+62% gain). In the third part, we introduce INT×Power ( www.intxpower.com ), a web application that enables users to draw their interaction and determine the sample size needed to reach the power of their choice with the option of using/combining these approaches.","PeriodicalId":55645,"journal":{"name":"Advances in Methods and Practices in Psychological Science","volume":"234 1","pages":"0"},"PeriodicalIF":15.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"How Many Participants Do I Need to Test an Interaction? Conducting an Appropriate Power Analysis and Achieving Sufficient Power to Detect an Interaction\",\"authors\":\"Nicolas Sommet, David L. Weissman, Nicolas Cheutin, Andrew J. Elliot\",\"doi\":\"10.1177/25152459231178728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power analysis for first-order interactions poses two challenges: (a) Conducting an appropriate power analysis is difficult because the typical expected effect size of an interaction depends on its shape, and (b) achieving sufficient power is difficult because interactions are often modest in size. This article consists of three parts. In the first part, we address the first challenge. We first use a fictional study to explain the difference between power analyses for interactions and main effects. Then, we introduce an intuitive taxonomy of 12 types of interactions based on the shape of the interaction (reversed, fully attenuated, partially attenuated) and the size of the simple slopes (median, smaller, larger), and we offer mathematically derived sample-size recommendations to detect each interaction with a power of .80/.90/.95 (for two-tailed tests in between-participants designs). In the second part, we address the second challenge. We first describe a preregistered metastudy (159 studies from recent articles in influential psychology journals) showing that the median power to detect interactions of a typical size is .18. Then, we use simulations (≈900,000,000 data sets) to generate power curves for the 12 types of interactions and test three approaches to increase power without increasing sample size: (a) preregistering one-tailed tests (+21% gain), (b) using a mixed design (+75% gain), and (c) preregistering contrast analysis for a fully attenuated interaction (+62% gain). In the third part, we introduce INT×Power ( www.intxpower.com ), a web application that enables users to draw their interaction and determine the sample size needed to reach the power of their choice with the option of using/combining these approaches.\",\"PeriodicalId\":55645,\"journal\":{\"name\":\"Advances in Methods and Practices in Psychological Science\",\"volume\":\"234 1\",\"pages\":\"0\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Methods and Practices in Psychological Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/25152459231178728\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Methods and Practices in Psychological Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/25152459231178728","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
How Many Participants Do I Need to Test an Interaction? Conducting an Appropriate Power Analysis and Achieving Sufficient Power to Detect an Interaction
Power analysis for first-order interactions poses two challenges: (a) Conducting an appropriate power analysis is difficult because the typical expected effect size of an interaction depends on its shape, and (b) achieving sufficient power is difficult because interactions are often modest in size. This article consists of three parts. In the first part, we address the first challenge. We first use a fictional study to explain the difference between power analyses for interactions and main effects. Then, we introduce an intuitive taxonomy of 12 types of interactions based on the shape of the interaction (reversed, fully attenuated, partially attenuated) and the size of the simple slopes (median, smaller, larger), and we offer mathematically derived sample-size recommendations to detect each interaction with a power of .80/.90/.95 (for two-tailed tests in between-participants designs). In the second part, we address the second challenge. We first describe a preregistered metastudy (159 studies from recent articles in influential psychology journals) showing that the median power to detect interactions of a typical size is .18. Then, we use simulations (≈900,000,000 data sets) to generate power curves for the 12 types of interactions and test three approaches to increase power without increasing sample size: (a) preregistering one-tailed tests (+21% gain), (b) using a mixed design (+75% gain), and (c) preregistering contrast analysis for a fully attenuated interaction (+62% gain). In the third part, we introduce INT×Power ( www.intxpower.com ), a web application that enables users to draw their interaction and determine the sample size needed to reach the power of their choice with the option of using/combining these approaches.
期刊介绍:
In 2021, Advances in Methods and Practices in Psychological Science will undergo a transition to become an open access journal. This journal focuses on publishing innovative developments in research methods, practices, and conduct within the field of psychological science. It embraces a wide range of areas and topics and encourages the integration of methodological and analytical questions.
The aim of AMPPS is to bring the latest methodological advances to researchers from various disciplines, even those who are not methodological experts. Therefore, the journal seeks submissions that are accessible to readers with different research interests and that represent the diverse research trends within the field of psychological science.
The types of content that AMPPS welcomes include articles that communicate advancements in methods, practices, and metascience, as well as empirical scientific best practices. Additionally, tutorials, commentaries, and simulation studies on new techniques and research tools are encouraged. The journal also aims to publish papers that bring advances from specialized subfields to a broader audience. Lastly, AMPPS accepts Registered Replication Reports, which focus on replicating important findings from previously published studies.
Overall, the transition of Advances in Methods and Practices in Psychological Science to an open access journal aims to increase accessibility and promote the dissemination of new developments in research methods and practices within the field of psychological science.