Cu/ZnO纳米结构掺杂对聚乙烯醇/聚乙烯吡咯烷酮/石墨烯光电复合材料光学性能的影响

M. G. Althobaiti, Ali Badawi
{"title":"Cu/ZnO纳米结构掺杂对聚乙烯醇/聚乙烯吡咯烷酮/石墨烯光电复合材料光学性能的影响","authors":"M. G. Althobaiti, Ali Badawi","doi":"10.1080/00222348.2023.2256583","DOIUrl":null,"url":null,"abstract":"Abstract The linear/non-linear optical and dielectric performance of PVA/PVP/graphene composites were enhanced by doping with Cu/ZnO (ZCO) nanoparticles (NPs) for optoelectronic applications. Bare and ZCO polymeric nanocomposites (PNCs) blends were fabricated by the casting method. The structure of the synthesized ZCO NPs and ZCO PNCs was studied by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy techniques. The optical performance was characterized based on UV-visible-NIR data. The XRD investigations revealed the wurtzite structure of the ZCO NPs with a crystallite size of 17.8 nm. The FT-IR investigations confirmed the integration of ZCO NPs with the host blend’s structure. The optical analysis exposed that the direct and indirect band gap of the host blend decreased from 5.20 and 4.94 to 4.36 and 4.29 eV for 10 wt% of ZCO PNCs. The Urbach energy rose from 0.62 to 1.28 eV for 10 wt% of ZCO PNCs. The refractive index grew from 1.29 (bare blend) to 1.82 for 10 wt% of ZCO PNC at hν = 2.0 eV. In addition, a great enhancement in the non-linear optical constants was achieved via ZCO doping. The third-order non-linear susceptibility, χ (3), increased from 1.30 × 10−13 esu (bare) to 9.23 × 10−11 esu for 10 wt% of ZCO PNC at hν = 5.0 eV. We suggest these valuable achievements in the optical behavior of PVA/PVP/graphene blend by ZCO doping nominate it for applications in optical device improvement.","PeriodicalId":16285,"journal":{"name":"Journal of Macromolecular Science, Part B","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of Cu/ZnO nanostructures doping on the optical behavior of polyvinyl alcohol/polyvinyl pyrrolidone/graphene composites for optoelectronic applications\",\"authors\":\"M. G. Althobaiti, Ali Badawi\",\"doi\":\"10.1080/00222348.2023.2256583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The linear/non-linear optical and dielectric performance of PVA/PVP/graphene composites were enhanced by doping with Cu/ZnO (ZCO) nanoparticles (NPs) for optoelectronic applications. Bare and ZCO polymeric nanocomposites (PNCs) blends were fabricated by the casting method. The structure of the synthesized ZCO NPs and ZCO PNCs was studied by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy techniques. The optical performance was characterized based on UV-visible-NIR data. The XRD investigations revealed the wurtzite structure of the ZCO NPs with a crystallite size of 17.8 nm. The FT-IR investigations confirmed the integration of ZCO NPs with the host blend’s structure. The optical analysis exposed that the direct and indirect band gap of the host blend decreased from 5.20 and 4.94 to 4.36 and 4.29 eV for 10 wt% of ZCO PNCs. The Urbach energy rose from 0.62 to 1.28 eV for 10 wt% of ZCO PNCs. The refractive index grew from 1.29 (bare blend) to 1.82 for 10 wt% of ZCO PNC at hν = 2.0 eV. In addition, a great enhancement in the non-linear optical constants was achieved via ZCO doping. The third-order non-linear susceptibility, χ (3), increased from 1.30 × 10−13 esu (bare) to 9.23 × 10−11 esu for 10 wt% of ZCO PNC at hν = 5.0 eV. We suggest these valuable achievements in the optical behavior of PVA/PVP/graphene blend by ZCO doping nominate it for applications in optical device improvement.\",\"PeriodicalId\":16285,\"journal\":{\"name\":\"Journal of Macromolecular Science, Part B\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Macromolecular Science, Part B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00222348.2023.2256583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Macromolecular Science, Part B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00222348.2023.2256583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Role of Cu/ZnO nanostructures doping on the optical behavior of polyvinyl alcohol/polyvinyl pyrrolidone/graphene composites for optoelectronic applications
Abstract The linear/non-linear optical and dielectric performance of PVA/PVP/graphene composites were enhanced by doping with Cu/ZnO (ZCO) nanoparticles (NPs) for optoelectronic applications. Bare and ZCO polymeric nanocomposites (PNCs) blends were fabricated by the casting method. The structure of the synthesized ZCO NPs and ZCO PNCs was studied by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy techniques. The optical performance was characterized based on UV-visible-NIR data. The XRD investigations revealed the wurtzite structure of the ZCO NPs with a crystallite size of 17.8 nm. The FT-IR investigations confirmed the integration of ZCO NPs with the host blend’s structure. The optical analysis exposed that the direct and indirect band gap of the host blend decreased from 5.20 and 4.94 to 4.36 and 4.29 eV for 10 wt% of ZCO PNCs. The Urbach energy rose from 0.62 to 1.28 eV for 10 wt% of ZCO PNCs. The refractive index grew from 1.29 (bare blend) to 1.82 for 10 wt% of ZCO PNC at hν = 2.0 eV. In addition, a great enhancement in the non-linear optical constants was achieved via ZCO doping. The third-order non-linear susceptibility, χ (3), increased from 1.30 × 10−13 esu (bare) to 9.23 × 10−11 esu for 10 wt% of ZCO PNC at hν = 5.0 eV. We suggest these valuable achievements in the optical behavior of PVA/PVP/graphene blend by ZCO doping nominate it for applications in optical device improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tailoring the Optical Properties of Gamma Ray Irradiated Polyvinyl Alcohol/Carboxymethyl Cellulose/Sodium Lignosulfonate Blend Films for their Application in Optoelectronic Devices Collagen-Based Hydrogel with Incorporated Nano-Hydroxyapatite for the Delivery of a Poorly Water-Soluble Drug Empirical Determination of the Internal Energy, Enthalpy, Helmholtz Free Energy and Gibbs Free Energy of Polyethylene When Two of the Thermodynamic Factors, Pressure, Volume, Temperature and Entropy, are Constant Surface Grafting of Magnetic Carbon Nanotubes and Their Vertical Alignment in PVDF Asymmetric Ultrafiltration Membranes for Fast Nanochannel Construction Improvement of the Thermal and Mechanical Properties of Polypropylene/Modified Halloysite Nanotubes Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1