{"title":"一种基于概率映射的目标检测方法","authors":"Shinji Uchinoura, Junichi Miyao, Takio Kurita","doi":"10.20965/jaciii.2023.p0886","DOIUrl":null,"url":null,"abstract":"This paper proposes a two-step detector called segmented object detection, whose performance is improved by masking the background region. Previous single-stage object detection methods suffer from the problem of imbalance between foreground and background classes, where the background occupies more regions in the image than the foreground. Thus, the loss from the background is firmly incorporated into the training. RetinaNet addresses this problem with Focal Loss, which focuses on foreground loss. Therefore, we propose a method that generates probability maps using instance segmentation in the first step and feeds back the generated maps as background masks in the second step as prior knowledge to reduce the influence of the background and enhance foreground training. We confirm that the detector can improve the accuracy by adding instance segmentation information to both the input and output rather than only to the output results. On the Cityscapes dataset, our method outperforms the state-of-the-art methods.","PeriodicalId":45921,"journal":{"name":"Journal of Advanced Computational Intelligence and Intelligent Informatics","volume":"14 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Object Detection Method Using Probability Maps for Instance Segmentation to Mask Background\",\"authors\":\"Shinji Uchinoura, Junichi Miyao, Takio Kurita\",\"doi\":\"10.20965/jaciii.2023.p0886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a two-step detector called segmented object detection, whose performance is improved by masking the background region. Previous single-stage object detection methods suffer from the problem of imbalance between foreground and background classes, where the background occupies more regions in the image than the foreground. Thus, the loss from the background is firmly incorporated into the training. RetinaNet addresses this problem with Focal Loss, which focuses on foreground loss. Therefore, we propose a method that generates probability maps using instance segmentation in the first step and feeds back the generated maps as background masks in the second step as prior knowledge to reduce the influence of the background and enhance foreground training. We confirm that the detector can improve the accuracy by adding instance segmentation information to both the input and output rather than only to the output results. On the Cityscapes dataset, our method outperforms the state-of-the-art methods.\",\"PeriodicalId\":45921,\"journal\":{\"name\":\"Journal of Advanced Computational Intelligence and Intelligent Informatics\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Computational Intelligence and Intelligent Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jaciii.2023.p0886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computational Intelligence and Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jaciii.2023.p0886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An Object Detection Method Using Probability Maps for Instance Segmentation to Mask Background
This paper proposes a two-step detector called segmented object detection, whose performance is improved by masking the background region. Previous single-stage object detection methods suffer from the problem of imbalance between foreground and background classes, where the background occupies more regions in the image than the foreground. Thus, the loss from the background is firmly incorporated into the training. RetinaNet addresses this problem with Focal Loss, which focuses on foreground loss. Therefore, we propose a method that generates probability maps using instance segmentation in the first step and feeds back the generated maps as background masks in the second step as prior knowledge to reduce the influence of the background and enhance foreground training. We confirm that the detector can improve the accuracy by adding instance segmentation information to both the input and output rather than only to the output results. On the Cityscapes dataset, our method outperforms the state-of-the-art methods.