用贝叶斯加性回归树评估美国职棒大联盟的板规

IF 1.1 Q3 SOCIAL SCIENCES, MATHEMATICAL METHODS Journal of Quantitative Analysis in Sports Pub Date : 2023-09-20 DOI:10.1515/jqas-2023-0048
Ryan Yee, Sameer K. Deshpande
{"title":"用贝叶斯加性回归树评估美国职棒大联盟的板规","authors":"Ryan Yee, Sameer K. Deshpande","doi":"10.1515/jqas-2023-0048","DOIUrl":null,"url":null,"abstract":"Abstract We introduce a three-step framework to determine at which pitches Major League batters should swing. Unlike traditional plate discipline metrics, which implicitly assume that all batters should always swing at (resp. take) pitches inside (resp. outside) the strike zone, our approach explicitly accounts not only for the players and umpires involved in the pitch but also in-game contextual information like the number of outs, the count, baserunners, and score. We first fit flexible Bayesian nonparametric models to estimate (i) the probability that the pitch is called a strike if the batter takes the pitch; (ii) the probability that the batter makes contact if he swings; and (iii) the number of runs the batting team is expected to score following each pitch outcome (e.g. swing and miss, take a called strike, etc.). We then combine these intermediate estimates to determine whether swinging increases the batting team’s run expectancy. Our approach enables natural uncertainty propagation so that we can not only determine the optimal swing/take decision but also quantify our confidence in that decision. We illustrate our framework using a case study of pitches faced by Mike Trout in 2019.","PeriodicalId":16925,"journal":{"name":"Journal of Quantitative Analysis in Sports","volume":"24 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating plate discipline in Major League Baseball with Bayesian Additive Regression Trees\",\"authors\":\"Ryan Yee, Sameer K. Deshpande\",\"doi\":\"10.1515/jqas-2023-0048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We introduce a three-step framework to determine at which pitches Major League batters should swing. Unlike traditional plate discipline metrics, which implicitly assume that all batters should always swing at (resp. take) pitches inside (resp. outside) the strike zone, our approach explicitly accounts not only for the players and umpires involved in the pitch but also in-game contextual information like the number of outs, the count, baserunners, and score. We first fit flexible Bayesian nonparametric models to estimate (i) the probability that the pitch is called a strike if the batter takes the pitch; (ii) the probability that the batter makes contact if he swings; and (iii) the number of runs the batting team is expected to score following each pitch outcome (e.g. swing and miss, take a called strike, etc.). We then combine these intermediate estimates to determine whether swinging increases the batting team’s run expectancy. Our approach enables natural uncertainty propagation so that we can not only determine the optimal swing/take decision but also quantify our confidence in that decision. We illustrate our framework using a case study of pitches faced by Mike Trout in 2019.\",\"PeriodicalId\":16925,\"journal\":{\"name\":\"Journal of Quantitative Analysis in Sports\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Analysis in Sports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jqas-2023-0048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Analysis in Sports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jqas-2023-0048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

摘要

摘要:我们介绍了一个三步框架来确定大联盟击球手应该在哪些球上挥拍。与传统的本垒训练指标不同的是,传统的指标隐含地假设所有击球手都应该在击球时挥棒。把投球带进去(请注意)。在好球区之外,我们的方法不仅明确地考虑了参与投球的球员和裁判,还考虑了游戏内的相关信息,如出局数、计数、跑垒者和得分。我们首先拟合灵活的贝叶斯非参数模型来估计(i)如果击球手投出这个球,这个球被称为好球的概率;(ii)击球手挥棒时触球的概率;以及(iii)每次投球结果(如挥棒而未击中、被判好球等)后,打击队期望得分的分数。然后,我们结合这些中间估计来确定挥拍是否会增加打击队的得分预期。我们的方法实现了自然的不确定性传播,因此我们不仅可以确定最佳的摆动/采取决策,还可以量化我们对该决策的信心。我们用麦克·特劳特在2019年面临的推销案例来说明我们的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating plate discipline in Major League Baseball with Bayesian Additive Regression Trees
Abstract We introduce a three-step framework to determine at which pitches Major League batters should swing. Unlike traditional plate discipline metrics, which implicitly assume that all batters should always swing at (resp. take) pitches inside (resp. outside) the strike zone, our approach explicitly accounts not only for the players and umpires involved in the pitch but also in-game contextual information like the number of outs, the count, baserunners, and score. We first fit flexible Bayesian nonparametric models to estimate (i) the probability that the pitch is called a strike if the batter takes the pitch; (ii) the probability that the batter makes contact if he swings; and (iii) the number of runs the batting team is expected to score following each pitch outcome (e.g. swing and miss, take a called strike, etc.). We then combine these intermediate estimates to determine whether swinging increases the batting team’s run expectancy. Our approach enables natural uncertainty propagation so that we can not only determine the optimal swing/take decision but also quantify our confidence in that decision. We illustrate our framework using a case study of pitches faced by Mike Trout in 2019.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Quantitative Analysis in Sports
Journal of Quantitative Analysis in Sports SOCIAL SCIENCES, MATHEMATICAL METHODS-
CiteScore
2.00
自引率
12.50%
发文量
15
期刊介绍: The Journal of Quantitative Analysis in Sports (JQAS), an official journal of the American Statistical Association, publishes timely, high-quality peer-reviewed research on the quantitative aspects of professional and amateur sports, including collegiate and Olympic competition. The scope of application reflects the increasing demand for novel methods to analyze and understand data in the growing field of sports analytics. Articles come from a wide variety of sports and diverse perspectives, and address topics such as game outcome models, measurement and evaluation of player performance, tournament structure, analysis of rules and adjudication, within-game strategy, analysis of sporting technologies, and player and team ranking methods. JQAS seeks to publish manuscripts that demonstrate original ways of approaching problems, develop cutting edge methods, and apply innovative thinking to solve difficult challenges in sports contexts. JQAS brings together researchers from various disciplines, including statistics, operations research, machine learning, scientific computing, econometrics, and sports management.
期刊最新文献
Improving the aggregation and evaluation of NBA mock drafts A basketball paradox: exploring NBA team defensive efficiency in a positionless game Success factors in national team football: an analysis of the UEFA EURO 2020 An empirical Bayes approach for estimating skill models for professional darts players A comprehensive survey of the home advantage in American football
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1