Julian Osorio, Tugba Sensoy, Alejandro Rivera, Gustavo A Patino-jaramillo, Juan C Ordonez
{"title":"相关性对抛物线槽集热器热性能建模的影响","authors":"Julian Osorio, Tugba Sensoy, Alejandro Rivera, Gustavo A Patino-jaramillo, Juan C Ordonez","doi":"10.1115/1.4062170","DOIUrl":null,"url":null,"abstract":"Abstract The influence of correlations on the thermal performance modeling of parabolic trough collectors was analyzed in this work. A versatile model for a parabolic trough collector was developed that allows one- and two-dimensional analysis and enables the use of correlations to calculate thermophysical properties and convection heat transfer coefficients. The model also allows the use of constant values for properties and/or coefficients obtained from the evaluation correlations at a specific temperature. The effect of each correlation was evaluated independently, and the results were compared with a reference case that considered a two-dimensional approach and used all the correlations. For the analyzed cases, the correlation for the absorber emittance has the strongest impact on the collector efficiency, leading to a lower error when used. Based on the results, a one-dimensional model approach considering a correlation for the absorber emittance leads to efficiency errors below 3% for collector lengths of up to 243.6 m. Compared with the reference case, a one-dimensional approach using all correlations for a collector with a length of 500 m, and operating with an inlet temperature of 773 K, can result in errors around 9%. However, using constant values for properties and heat transfer coefficients could lead to errors of up to 50%. Multiple thermal models for parabolic trough collectors proposed in the literature rely on a one-dimensional approach, estimated values for the heat transfer coefficients, and constant thermophysical properties. The errors associated with those approaches are analyzed and quantified in this work as a function of the collector length and operation temperature.","PeriodicalId":17124,"journal":{"name":"Journal of Solar Energy Engineering-transactions of The Asme","volume":"18 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Influence of Correlations on the Thermal Performance Modeling of Parabolic Trough Collectors\",\"authors\":\"Julian Osorio, Tugba Sensoy, Alejandro Rivera, Gustavo A Patino-jaramillo, Juan C Ordonez\",\"doi\":\"10.1115/1.4062170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The influence of correlations on the thermal performance modeling of parabolic trough collectors was analyzed in this work. A versatile model for a parabolic trough collector was developed that allows one- and two-dimensional analysis and enables the use of correlations to calculate thermophysical properties and convection heat transfer coefficients. The model also allows the use of constant values for properties and/or coefficients obtained from the evaluation correlations at a specific temperature. The effect of each correlation was evaluated independently, and the results were compared with a reference case that considered a two-dimensional approach and used all the correlations. For the analyzed cases, the correlation for the absorber emittance has the strongest impact on the collector efficiency, leading to a lower error when used. Based on the results, a one-dimensional model approach considering a correlation for the absorber emittance leads to efficiency errors below 3% for collector lengths of up to 243.6 m. Compared with the reference case, a one-dimensional approach using all correlations for a collector with a length of 500 m, and operating with an inlet temperature of 773 K, can result in errors around 9%. However, using constant values for properties and heat transfer coefficients could lead to errors of up to 50%. Multiple thermal models for parabolic trough collectors proposed in the literature rely on a one-dimensional approach, estimated values for the heat transfer coefficients, and constant thermophysical properties. The errors associated with those approaches are analyzed and quantified in this work as a function of the collector length and operation temperature.\",\"PeriodicalId\":17124,\"journal\":{\"name\":\"Journal of Solar Energy Engineering-transactions of The Asme\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solar Energy Engineering-transactions of The Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062170\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solar Energy Engineering-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4062170","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Influence of Correlations on the Thermal Performance Modeling of Parabolic Trough Collectors
Abstract The influence of correlations on the thermal performance modeling of parabolic trough collectors was analyzed in this work. A versatile model for a parabolic trough collector was developed that allows one- and two-dimensional analysis and enables the use of correlations to calculate thermophysical properties and convection heat transfer coefficients. The model also allows the use of constant values for properties and/or coefficients obtained from the evaluation correlations at a specific temperature. The effect of each correlation was evaluated independently, and the results were compared with a reference case that considered a two-dimensional approach and used all the correlations. For the analyzed cases, the correlation for the absorber emittance has the strongest impact on the collector efficiency, leading to a lower error when used. Based on the results, a one-dimensional model approach considering a correlation for the absorber emittance leads to efficiency errors below 3% for collector lengths of up to 243.6 m. Compared with the reference case, a one-dimensional approach using all correlations for a collector with a length of 500 m, and operating with an inlet temperature of 773 K, can result in errors around 9%. However, using constant values for properties and heat transfer coefficients could lead to errors of up to 50%. Multiple thermal models for parabolic trough collectors proposed in the literature rely on a one-dimensional approach, estimated values for the heat transfer coefficients, and constant thermophysical properties. The errors associated with those approaches are analyzed and quantified in this work as a function of the collector length and operation temperature.
期刊介绍:
The Journal of Solar Energy Engineering - Including Wind Energy and Building Energy Conservation - publishes research papers that contain original work of permanent interest in all areas of solar energy and energy conservation, as well as discussions of policy and regulatory issues that affect renewable energy technologies and their implementation. Papers that do not include original work, but nonetheless present quality analysis or incremental improvements to past work may be published as Technical Briefs. Review papers are accepted but should be discussed with the Editor prior to submission. The Journal also publishes a section called Solar Scenery that features photographs or graphical displays of significant new installations or research facilities.