{"title":"异丙肾上腺素和利尿加压素对蟾蜍膀胱渗透性的影响。","authors":"C Lippe, C Ardizzone","doi":"10.3109/13813458909075085","DOIUrl":null,"url":null,"abstract":"<p><p>Isoprenaline, a beta adrenergic agonist, strongly increases both transepithelial fluxes across the urinary bladder of Bufo bufo; this effect is dose dependent, 10(-6)M being necessary for the maximal action. This effect is less selective than that of vasopressin: the ratio J urea/J thiourea is 3.8 under isoprenaline and 30.4 under vasopressin treatment. Both hormones differently affect the permeability of a mainly liposoluble molecule, i.e. antipyrine: vasopressin increases antipyrine permeability, while isoprenaline decreases it. Moreover diethylpyrocarbonate treatment of the luminal membrane strongly inhibits vasopressin effect on urea permeability leaving unmodified that of isoprenaline. However, the actions of both hormones are not additive. These results allows to assume that the tissue has a feedback mechanism which inhibits other hormonal action while the bladder is stimulated by a particular hormone.</p>","PeriodicalId":8170,"journal":{"name":"Archives internationales de physiologie et de biochimie","volume":"97 6","pages":"537-43"},"PeriodicalIF":0.0000,"publicationDate":"1989-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/13813458909075085","citationCount":"1","resultStr":"{\"title\":\"Permeability properties of the Bufo bufo bladder as affected by isoprenaline and vasopressin.\",\"authors\":\"C Lippe, C Ardizzone\",\"doi\":\"10.3109/13813458909075085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Isoprenaline, a beta adrenergic agonist, strongly increases both transepithelial fluxes across the urinary bladder of Bufo bufo; this effect is dose dependent, 10(-6)M being necessary for the maximal action. This effect is less selective than that of vasopressin: the ratio J urea/J thiourea is 3.8 under isoprenaline and 30.4 under vasopressin treatment. Both hormones differently affect the permeability of a mainly liposoluble molecule, i.e. antipyrine: vasopressin increases antipyrine permeability, while isoprenaline decreases it. Moreover diethylpyrocarbonate treatment of the luminal membrane strongly inhibits vasopressin effect on urea permeability leaving unmodified that of isoprenaline. However, the actions of both hormones are not additive. These results allows to assume that the tissue has a feedback mechanism which inhibits other hormonal action while the bladder is stimulated by a particular hormone.</p>\",\"PeriodicalId\":8170,\"journal\":{\"name\":\"Archives internationales de physiologie et de biochimie\",\"volume\":\"97 6\",\"pages\":\"537-43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/13813458909075085\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives internationales de physiologie et de biochimie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/13813458909075085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives internationales de physiologie et de biochimie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/13813458909075085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Permeability properties of the Bufo bufo bladder as affected by isoprenaline and vasopressin.
Isoprenaline, a beta adrenergic agonist, strongly increases both transepithelial fluxes across the urinary bladder of Bufo bufo; this effect is dose dependent, 10(-6)M being necessary for the maximal action. This effect is less selective than that of vasopressin: the ratio J urea/J thiourea is 3.8 under isoprenaline and 30.4 under vasopressin treatment. Both hormones differently affect the permeability of a mainly liposoluble molecule, i.e. antipyrine: vasopressin increases antipyrine permeability, while isoprenaline decreases it. Moreover diethylpyrocarbonate treatment of the luminal membrane strongly inhibits vasopressin effect on urea permeability leaving unmodified that of isoprenaline. However, the actions of both hormones are not additive. These results allows to assume that the tissue has a feedback mechanism which inhibits other hormonal action while the bladder is stimulated by a particular hormone.