通过设置返程轨道增强城市轨道交通网络弹性:一个情景模型方法

IF 1.6 4区 工程技术 Q3 ENGINEERING, CIVIL Transportation Research Record Pub Date : 2023-09-30 DOI:10.1177/03611981231203157
Jinqu Chen, Chengzhen Jiang, Xiaowei Liu, Bo Du, Qiyuan Peng, Yong Yin, Baowen Li
{"title":"通过设置返程轨道增强城市轨道交通网络弹性:一个情景模型方法","authors":"Jinqu Chen, Chengzhen Jiang, Xiaowei Liu, Bo Du, Qiyuan Peng, Yong Yin, Baowen Li","doi":"10.1177/03611981231203157","DOIUrl":null,"url":null,"abstract":"The resilience of an urban rail transit (URT) network when faced with disruptions is affected by the locations of stations equipped with turn-back (TB) tracks. However, limited studies have enhanced the resilience of a URT network by setting new TB tracks. The present work addresses this gap by proposing and solving a scenario model for improving the operation of a URT network under normal conditions and disruptions by considering uncertain disruptions. A solution algorithm combined with the non-dominated sorting genetic algorithm-II is proposed to solve the model. Numerical experiments conducted on the Chengdu subway system indicate that the resilience of a URT network is significantly affected by TB operations provided at stations equipped with TB tracks. Compared with a network without new TB tracks, the matching degree between passenger flow spatial distribution and TB convenience, and the network’s overall resilience metric (NORM) are improved by 12.05% and 0.58%, respectively, when five new TB tracks are installed. The solution effectiveness of the model is related to the number of new TB tracks, and the NORM decreases by an average of [Formula: see text] after adding new TB tracks to a station.","PeriodicalId":23279,"journal":{"name":"Transportation Research Record","volume":"68 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resilience Enhancement of an Urban Rail Transit Network by Setting Turn-Back Tracks: A Scenario Model Approach\",\"authors\":\"Jinqu Chen, Chengzhen Jiang, Xiaowei Liu, Bo Du, Qiyuan Peng, Yong Yin, Baowen Li\",\"doi\":\"10.1177/03611981231203157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The resilience of an urban rail transit (URT) network when faced with disruptions is affected by the locations of stations equipped with turn-back (TB) tracks. However, limited studies have enhanced the resilience of a URT network by setting new TB tracks. The present work addresses this gap by proposing and solving a scenario model for improving the operation of a URT network under normal conditions and disruptions by considering uncertain disruptions. A solution algorithm combined with the non-dominated sorting genetic algorithm-II is proposed to solve the model. Numerical experiments conducted on the Chengdu subway system indicate that the resilience of a URT network is significantly affected by TB operations provided at stations equipped with TB tracks. Compared with a network without new TB tracks, the matching degree between passenger flow spatial distribution and TB convenience, and the network’s overall resilience metric (NORM) are improved by 12.05% and 0.58%, respectively, when five new TB tracks are installed. The solution effectiveness of the model is related to the number of new TB tracks, and the NORM decreases by an average of [Formula: see text] after adding new TB tracks to a station.\",\"PeriodicalId\":23279,\"journal\":{\"name\":\"Transportation Research Record\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/03611981231203157\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/03611981231203157","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

城市轨道交通(URT)网络在面临中断时的弹性受到配备回程(TB)轨道的车站位置的影响。然而,有限的研究通过设置新的结核病轨道增强了URT网络的弹性。目前的工作通过提出和解决一个场景模型来解决这一差距,该模型可以在考虑不确定中断的情况下改善轨道交通网络在正常条件和中断下的运行。提出了一种结合非支配排序遗传算法的求解算法- ii。在成都地铁系统上进行的数值实验表明,在配备结核病轨道的车站提供结核病运营对轨道交通网络的弹性有显著影响。与未新建结核轨道相比,新增5条结核轨道后,客流空间分布与结核便捷性的匹配度和路网总体弹性指标(NORM)分别提高了12.05%和0.58%。模型的求解效果与新增TB轨道的数量有关,在车站新增TB轨道后,NORM平均降低了[公式:见文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resilience Enhancement of an Urban Rail Transit Network by Setting Turn-Back Tracks: A Scenario Model Approach
The resilience of an urban rail transit (URT) network when faced with disruptions is affected by the locations of stations equipped with turn-back (TB) tracks. However, limited studies have enhanced the resilience of a URT network by setting new TB tracks. The present work addresses this gap by proposing and solving a scenario model for improving the operation of a URT network under normal conditions and disruptions by considering uncertain disruptions. A solution algorithm combined with the non-dominated sorting genetic algorithm-II is proposed to solve the model. Numerical experiments conducted on the Chengdu subway system indicate that the resilience of a URT network is significantly affected by TB operations provided at stations equipped with TB tracks. Compared with a network without new TB tracks, the matching degree between passenger flow spatial distribution and TB convenience, and the network’s overall resilience metric (NORM) are improved by 12.05% and 0.58%, respectively, when five new TB tracks are installed. The solution effectiveness of the model is related to the number of new TB tracks, and the NORM decreases by an average of [Formula: see text] after adding new TB tracks to a station.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transportation Research Record
Transportation Research Record 工程技术-工程:土木
CiteScore
3.20
自引率
11.80%
发文量
918
审稿时长
4.2 months
期刊介绍: Transportation Research Record: Journal of the Transportation Research Board is one of the most cited and prolific transportation journals in the world, offering unparalleled depth and breadth in the coverage of transportation-related topics. The TRR publishes approximately 70 issues annually of outstanding, peer-reviewed papers presenting research findings in policy, planning, administration, economics and financing, operations, construction, design, maintenance, safety, and more, for all modes of transportation. This site provides electronic access to a full compilation of papers since the 1996 series.
期刊最新文献
Acute Bilateral Optic Neuropathy: A Rare Presentation of Wernicke Encephalopathy. Simulation Study of Pedestrians Evacuation Considering Aggressive Behavior Analyzing Freeway Safety Influencing Factors Using the CatBoost Model and Interpretable Machine-Learning Framework, SHAP Numerical Analysis of Error From Sampling of Alternatives in Logit-Based Demand Forecasting Models with Massive Choice Sets Bus Operation Safety Business Intelligence Solution: Applying Analytics for Key Performance Indicator, Investigation, and Targeted Actions Analyses with a Centralized Data Warehouse
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1