近似多方查询处理的安全抽样

Qiyao Luo, Yilei Wang, Ke Yi, Sheng Wang, Feifei Li
{"title":"近似多方查询处理的安全抽样","authors":"Qiyao Luo, Yilei Wang, Ke Yi, Sheng Wang, Feifei Li","doi":"10.1145/3617339","DOIUrl":null,"url":null,"abstract":"We study the problem of random sampling in the secure multi-party computation (MPC) model. In MPC, taking a sample securely must have a cost Ω(n) irrespective to the sample size s. This is in stark contrast with the plaintext setting, where a sample can be taken in O(s) time trivially. Thus, the goal of approximate query processing (AQP) with sublinear costs seems unachievable under MPC. To get around this inherent barrier, in this paper we take a two-stage approach: In the offline stage, we generate a batch of n/s samples with (n) total cost, which can then be consumed to answer queries as they arrive online. Such an approach allows us to achieve an Õ(s) amortized cost per query, similar to the plaintext setting. Based on our secure batch sampling algorithms, we build MASQUE, an MPC-AQP system that achieves sublinear online query costs by running an MPC protocol to evaluate the queries on pre-generated samples. MASQUE achieves the strong security guarantee of the MPC model, i.e., nothing is revealed beyond the query result, which itself can be further protected by (amplified) differential privacy","PeriodicalId":498157,"journal":{"name":"Proceedings of the ACM on Management of Data","volume":"35 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secure Sampling for Approximate Multi-party Query Processing\",\"authors\":\"Qiyao Luo, Yilei Wang, Ke Yi, Sheng Wang, Feifei Li\",\"doi\":\"10.1145/3617339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of random sampling in the secure multi-party computation (MPC) model. In MPC, taking a sample securely must have a cost Ω(n) irrespective to the sample size s. This is in stark contrast with the plaintext setting, where a sample can be taken in O(s) time trivially. Thus, the goal of approximate query processing (AQP) with sublinear costs seems unachievable under MPC. To get around this inherent barrier, in this paper we take a two-stage approach: In the offline stage, we generate a batch of n/s samples with (n) total cost, which can then be consumed to answer queries as they arrive online. Such an approach allows us to achieve an Õ(s) amortized cost per query, similar to the plaintext setting. Based on our secure batch sampling algorithms, we build MASQUE, an MPC-AQP system that achieves sublinear online query costs by running an MPC protocol to evaluate the queries on pre-generated samples. MASQUE achieves the strong security guarantee of the MPC model, i.e., nothing is revealed beyond the query result, which itself can be further protected by (amplified) differential privacy\",\"PeriodicalId\":498157,\"journal\":{\"name\":\"Proceedings of the ACM on Management of Data\",\"volume\":\"35 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3617339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3617339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究安全多方计算(MPC)模型中的随机抽样问题。在MPC中,无论样本大小如何,安全地获取样本必须具有Ω(n)的成本。这与明文设置形成鲜明对比,明文设置可以在O(s)时间内轻松获取样本。因此,在MPC下,近似查询处理(AQP)的亚线性成本目标似乎无法实现。为了绕过这个固有的障碍,在本文中,我们采用了两阶段的方法:在离线阶段,我们生成一批n/s个总成本为(n)的样本,然后当它们到达在线时,可以使用这些样本来回答查询。这种方法允许我们实现每个查询的平摊成本Õ(s),类似于明文设置。基于我们的安全批处理抽样算法,我们构建了一个MPC- aqp系统MASQUE,该系统通过运行MPC协议来评估预生成样本的查询,从而实现亚线性在线查询成本。MASQUE实现了MPC模型的强安全性保证,即除了查询结果之外没有任何东西被泄露,而查询结果本身可以通过(放大的)差分隐私进一步得到保护
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Secure Sampling for Approximate Multi-party Query Processing
We study the problem of random sampling in the secure multi-party computation (MPC) model. In MPC, taking a sample securely must have a cost Ω(n) irrespective to the sample size s. This is in stark contrast with the plaintext setting, where a sample can be taken in O(s) time trivially. Thus, the goal of approximate query processing (AQP) with sublinear costs seems unachievable under MPC. To get around this inherent barrier, in this paper we take a two-stage approach: In the offline stage, we generate a batch of n/s samples with (n) total cost, which can then be consumed to answer queries as they arrive online. Such an approach allows us to achieve an Õ(s) amortized cost per query, similar to the plaintext setting. Based on our secure batch sampling algorithms, we build MASQUE, an MPC-AQP system that achieves sublinear online query costs by running an MPC protocol to evaluate the queries on pre-generated samples. MASQUE achieves the strong security guarantee of the MPC model, i.e., nothing is revealed beyond the query result, which itself can be further protected by (amplified) differential privacy
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Verification of Unary Communicating Datalog Programs Postulates for Provenance: Instance-based provenance for first-order logic Tight Lower Bounds for Directed Cut Sparsification and Distributed Min-Cut Containment of Graph Queries Modulo Schema Bag Semantics Conjunctive Query Containment. Four Small Steps Towards Undecidability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1