PACMMOD第1卷,第3期:社论

Divyakant Agrawal, Alexandra Meliou, S. Sudarshan
{"title":"PACMMOD第1卷,第3期:社论","authors":"Divyakant Agrawal, Alexandra Meliou, S. Sudarshan","doi":"10.1145/3617307","DOIUrl":null,"url":null,"abstract":"We are excited to introduce this new issue of PACMMOD (Proceedings of the ACM on Management of Data). PACMMOD is a new journal, concerned with the principles, algorithms, techniques, systems, and applications of database management systems, data management technology, and science and engineering of data. It includes articles reporting cutting-edge data management, data engineering, and data science research. Articles published at PACMMOD address data challenges at various stages of the data lifecycle, from modeling, acquisition, cleaning, integration, indexing, querying, analysis, exploration, visualization, interpretation, and explanation. They focus on dataintensive components of data pipelines, and solve problems in areas of interest to our community (e.g., data curation, optimization, performance, storage, systems), operating within accuracy, privacy, fairness, and diversity constraints. Articles reporting deployed systems and solutions to data science pipelines and/or fundamental experiences and insights from evaluating real-world data engineering problems are especially encouraged.","PeriodicalId":498157,"journal":{"name":"Proceedings of the ACM on Management of Data","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PACMMOD Volume 1, Issue 3: Editorial\",\"authors\":\"Divyakant Agrawal, Alexandra Meliou, S. Sudarshan\",\"doi\":\"10.1145/3617307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are excited to introduce this new issue of PACMMOD (Proceedings of the ACM on Management of Data). PACMMOD is a new journal, concerned with the principles, algorithms, techniques, systems, and applications of database management systems, data management technology, and science and engineering of data. It includes articles reporting cutting-edge data management, data engineering, and data science research. Articles published at PACMMOD address data challenges at various stages of the data lifecycle, from modeling, acquisition, cleaning, integration, indexing, querying, analysis, exploration, visualization, interpretation, and explanation. They focus on dataintensive components of data pipelines, and solve problems in areas of interest to our community (e.g., data curation, optimization, performance, storage, systems), operating within accuracy, privacy, fairness, and diversity constraints. Articles reporting deployed systems and solutions to data science pipelines and/or fundamental experiences and insights from evaluating real-world data engineering problems are especially encouraged.\",\"PeriodicalId\":498157,\"journal\":{\"name\":\"Proceedings of the ACM on Management of Data\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3617307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3617307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们很高兴地向大家介绍最新一期的PACMMOD (ACM数据管理论文集)。PACMMOD是一本新的期刊,关注数据库管理系统、数据管理技术、数据科学与工程的原理、算法、技术、系统和应用。它包括报道前沿数据管理、数据工程和数据科学研究的文章。在PACMMOD上发表的文章涉及数据生命周期各个阶段的数据挑战,包括建模、获取、清理、集成、索引、查询、分析、探索、可视化、解释和解释。他们专注于数据管道的数据密集型组件,并解决我们社区感兴趣的领域的问题(例如,数据管理,优化,性能,存储,系统),在准确性,隐私性,公平性和多样性约束下操作。特别鼓励文章报告数据科学管道的部署系统和解决方案,以及/或评估现实世界数据工程问题的基本经验和见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PACMMOD Volume 1, Issue 3: Editorial
We are excited to introduce this new issue of PACMMOD (Proceedings of the ACM on Management of Data). PACMMOD is a new journal, concerned with the principles, algorithms, techniques, systems, and applications of database management systems, data management technology, and science and engineering of data. It includes articles reporting cutting-edge data management, data engineering, and data science research. Articles published at PACMMOD address data challenges at various stages of the data lifecycle, from modeling, acquisition, cleaning, integration, indexing, querying, analysis, exploration, visualization, interpretation, and explanation. They focus on dataintensive components of data pipelines, and solve problems in areas of interest to our community (e.g., data curation, optimization, performance, storage, systems), operating within accuracy, privacy, fairness, and diversity constraints. Articles reporting deployed systems and solutions to data science pipelines and/or fundamental experiences and insights from evaluating real-world data engineering problems are especially encouraged.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Verification of Unary Communicating Datalog Programs Postulates for Provenance: Instance-based provenance for first-order logic Tight Lower Bounds for Directed Cut Sparsification and Distributed Min-Cut Containment of Graph Queries Modulo Schema Bag Semantics Conjunctive Query Containment. Four Small Steps Towards Undecidability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1