SH2O:工作共享数据库的高效数据访问

Panagiotis Sioulas, Ioannis Mytilinis, Anastasia Ailamaki
{"title":"SH2O:工作共享数据库的高效数据访问","authors":"Panagiotis Sioulas, Ioannis Mytilinis, Anastasia Ailamaki","doi":"10.1145/3617340","DOIUrl":null,"url":null,"abstract":"Interactive applications require processing tens to hundreds of concurrent analytical queries within tight time constraints. In such setups, where high concurrency causes contention, work-sharing databases are critical for improving scalability and for bounding the increase in response time. However, as such databases share data access using full scans and expensive shared filters, they suffer from a data-access bottleneck that jeopardizes interactivity. We present SH2O: a novel data-access operator that addresses the data-access bottleneck of work-sharing databases. SH2O is based on the idea that an access pattern based on judiciously selected multidimensional ranges can replace a set of shared filters. To exploit the idea in an efficient and scalable manner, SH2O uses a three-tier approach: i) it uses spatial indices to efficiently access the ranges without overfetching, ii) it uses an optimizer to choose which filters to replace such that it maximizes cost-benefit for index accesses, and iii) it exploits partitioning schemes and independently accesses each data partition to reduce the number of filters in the access pattern. Furthermore, we propose a tuning strategy that chooses a partitioning and indexing scheme that minimizes SH2O's cost for a target workload. Our evaluation shows a speedup of 1.8-22.2 for batches of hundreds of data-access-bound queries.","PeriodicalId":498157,"journal":{"name":"Proceedings of the ACM on Management of Data","volume":"34 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SH2O: Efficient Data Access for Work-Sharing Databases\",\"authors\":\"Panagiotis Sioulas, Ioannis Mytilinis, Anastasia Ailamaki\",\"doi\":\"10.1145/3617340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interactive applications require processing tens to hundreds of concurrent analytical queries within tight time constraints. In such setups, where high concurrency causes contention, work-sharing databases are critical for improving scalability and for bounding the increase in response time. However, as such databases share data access using full scans and expensive shared filters, they suffer from a data-access bottleneck that jeopardizes interactivity. We present SH2O: a novel data-access operator that addresses the data-access bottleneck of work-sharing databases. SH2O is based on the idea that an access pattern based on judiciously selected multidimensional ranges can replace a set of shared filters. To exploit the idea in an efficient and scalable manner, SH2O uses a three-tier approach: i) it uses spatial indices to efficiently access the ranges without overfetching, ii) it uses an optimizer to choose which filters to replace such that it maximizes cost-benefit for index accesses, and iii) it exploits partitioning schemes and independently accesses each data partition to reduce the number of filters in the access pattern. Furthermore, we propose a tuning strategy that chooses a partitioning and indexing scheme that minimizes SH2O's cost for a target workload. Our evaluation shows a speedup of 1.8-22.2 for batches of hundreds of data-access-bound queries.\",\"PeriodicalId\":498157,\"journal\":{\"name\":\"Proceedings of the ACM on Management of Data\",\"volume\":\"34 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3617340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3617340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

交互式应用程序需要在紧迫的时间限制内处理数十到数百个并发分析查询。在这样的设置中,高并发性会导致争用,工作共享数据库对于提高可伸缩性和限制响应时间的增加至关重要。但是,由于这些数据库使用完整扫描和昂贵的共享过滤器共享数据访问,因此它们会遇到数据访问瓶颈,从而危及交互性。我们提出了SH2O:一个新的数据访问运算符,解决了工作共享数据库的数据访问瓶颈。SH2O基于这样一种思想:基于明智选择的多维范围的访问模式可以替换一组共享筛选器。为了以高效和可扩展的方式利用这个想法,SH2O使用了三层方法:i)它使用空间索引来有效地访问范围,而不会过度抓取;ii)它使用优化器来选择要替换哪些过滤器,从而使索引访问的成本效益最大化;iii)它利用分区方案并独立访问每个数据分区,以减少访问模式中的过滤器数量。此外,我们提出了一种调优策略,该策略选择一个分区和索引方案,使目标工作负载的SH2O成本最小化。我们的评估显示,对于数百个数据访问绑定查询的批次,速度提高了1.8-22.2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SH2O: Efficient Data Access for Work-Sharing Databases
Interactive applications require processing tens to hundreds of concurrent analytical queries within tight time constraints. In such setups, where high concurrency causes contention, work-sharing databases are critical for improving scalability and for bounding the increase in response time. However, as such databases share data access using full scans and expensive shared filters, they suffer from a data-access bottleneck that jeopardizes interactivity. We present SH2O: a novel data-access operator that addresses the data-access bottleneck of work-sharing databases. SH2O is based on the idea that an access pattern based on judiciously selected multidimensional ranges can replace a set of shared filters. To exploit the idea in an efficient and scalable manner, SH2O uses a three-tier approach: i) it uses spatial indices to efficiently access the ranges without overfetching, ii) it uses an optimizer to choose which filters to replace such that it maximizes cost-benefit for index accesses, and iii) it exploits partitioning schemes and independently accesses each data partition to reduce the number of filters in the access pattern. Furthermore, we propose a tuning strategy that chooses a partitioning and indexing scheme that minimizes SH2O's cost for a target workload. Our evaluation shows a speedup of 1.8-22.2 for batches of hundreds of data-access-bound queries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Verification of Unary Communicating Datalog Programs Postulates for Provenance: Instance-based provenance for first-order logic Tight Lower Bounds for Directed Cut Sparsification and Distributed Min-Cut Containment of Graph Queries Modulo Schema Bag Semantics Conjunctive Query Containment. Four Small Steps Towards Undecidability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1