微生物连续发酵非线性系统参数估计的序贯几何规划法

IF 2.3 4区 工程技术 Q3 ENGINEERING, CHEMICAL International Journal of Chemical Engineering Pub Date : 2023-10-10 DOI:10.1155/2023/8072920
Gongxian Xu, Zijia Liu
{"title":"微生物连续发酵非线性系统参数估计的序贯几何规划法","authors":"Gongxian Xu, Zijia Liu","doi":"10.1155/2023/8072920","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of parameter estimation for the microbial continuous fermentation of glycerol to 1,3-propanediol. A nonlinear dynamical system is first presented to describe the microbial continuous fermentation. Some mathematical properties of the dynamical system in the microbial continuous fermentation are also presented. A parameter estimation model is proposed to estimate the parameters of the dynamical system. The proposed estimation model is a large-scale, nonlinear, and nonconvex optimization problem if the number of experimental groups is large. A sequential geometric programming (SGP) method is proposed to efficiently solve the parameter estimation problem. The results indicated that our proposed SGP method can yield smaller errors between the experimental and calculated steady-state concentrations than the existing seven methods. For the five error indices considered, that is, the concentration errors of biomass, glycerol, 1,3-propanediol, acetic acid, and ethanol, the results obtained using the proposed SGP method are better than those obtained using the methods in the literature (Xiu et al., Gao et al., Sun et al., Sun et al., Li and Qu, Wang et al., and Zhang and Xu), with improvements of approximately 71.86–95.03%, 52.08–94.87%, 99.70–99.98%, 5.39–90.29%, and 12.67–80.83%, respectively. This concludes that the established dynamical system can better describe the microbial continuous fermentation. We also present that our established dynamical system has multiple positive steady states in some fermentation conditions. We observe that there are two regions of multiple positive steady states at relatively high values of substrate glycerol concentration in feed medium.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":"223 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequential Geometric Programming Method for Parameter Estimation of a Nonlinear System in Microbial Continuous Fermentation\",\"authors\":\"Gongxian Xu, Zijia Liu\",\"doi\":\"10.1155/2023/8072920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of parameter estimation for the microbial continuous fermentation of glycerol to 1,3-propanediol. A nonlinear dynamical system is first presented to describe the microbial continuous fermentation. Some mathematical properties of the dynamical system in the microbial continuous fermentation are also presented. A parameter estimation model is proposed to estimate the parameters of the dynamical system. The proposed estimation model is a large-scale, nonlinear, and nonconvex optimization problem if the number of experimental groups is large. A sequential geometric programming (SGP) method is proposed to efficiently solve the parameter estimation problem. The results indicated that our proposed SGP method can yield smaller errors between the experimental and calculated steady-state concentrations than the existing seven methods. For the five error indices considered, that is, the concentration errors of biomass, glycerol, 1,3-propanediol, acetic acid, and ethanol, the results obtained using the proposed SGP method are better than those obtained using the methods in the literature (Xiu et al., Gao et al., Sun et al., Sun et al., Li and Qu, Wang et al., and Zhang and Xu), with improvements of approximately 71.86–95.03%, 52.08–94.87%, 99.70–99.98%, 5.39–90.29%, and 12.67–80.83%, respectively. This concludes that the established dynamical system can better describe the microbial continuous fermentation. We also present that our established dynamical system has multiple positive steady states in some fermentation conditions. We observe that there are two regions of multiple positive steady states at relatively high values of substrate glycerol concentration in feed medium.\",\"PeriodicalId\":13921,\"journal\":{\"name\":\"International Journal of Chemical Engineering\",\"volume\":\"223 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8072920\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/8072920","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了微生物连续发酵甘油制1,3-丙二醇的参数估计问题。首次提出了描述微生物连续发酵过程的非线性动力系统。给出了微生物连续发酵过程中动力系统的一些数学性质。提出了一种参数估计模型来估计动力系统的参数。所提出的估计模型是一个大规模的、非线性的、非凸的优化问题。为了有效地解决参数估计问题,提出了序列几何规划(SGP)方法。结果表明,与现有的7种方法相比,我们提出的SGP方法在实验和计算稳态浓度之间的误差更小。对于生物质、甘油、1,3-丙二醇、乙酸、乙醇等5个误差指标,采用SGP方法得到的结果优于文献方法(Xiu et al.、Gao et al.、Sun et al.、Sun et al.、Li and Qu .、Wang et al.、Zhang and Xu .),分别提高了约71.86-95.03%、52.08-94.87%、99.70-99.98%、5.39-90.29%和12.67-80.83%。由此可见,所建立的动力学系统能较好地描述微生物连续发酵过程。我们还证明了所建立的动力系统在某些发酵条件下具有多个正稳态。我们观察到,在饲料培养基中相对较高的底物甘油浓度值下,有两个区域存在多个正稳态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sequential Geometric Programming Method for Parameter Estimation of a Nonlinear System in Microbial Continuous Fermentation
This paper addresses the problem of parameter estimation for the microbial continuous fermentation of glycerol to 1,3-propanediol. A nonlinear dynamical system is first presented to describe the microbial continuous fermentation. Some mathematical properties of the dynamical system in the microbial continuous fermentation are also presented. A parameter estimation model is proposed to estimate the parameters of the dynamical system. The proposed estimation model is a large-scale, nonlinear, and nonconvex optimization problem if the number of experimental groups is large. A sequential geometric programming (SGP) method is proposed to efficiently solve the parameter estimation problem. The results indicated that our proposed SGP method can yield smaller errors between the experimental and calculated steady-state concentrations than the existing seven methods. For the five error indices considered, that is, the concentration errors of biomass, glycerol, 1,3-propanediol, acetic acid, and ethanol, the results obtained using the proposed SGP method are better than those obtained using the methods in the literature (Xiu et al., Gao et al., Sun et al., Sun et al., Li and Qu, Wang et al., and Zhang and Xu), with improvements of approximately 71.86–95.03%, 52.08–94.87%, 99.70–99.98%, 5.39–90.29%, and 12.67–80.83%, respectively. This concludes that the established dynamical system can better describe the microbial continuous fermentation. We also present that our established dynamical system has multiple positive steady states in some fermentation conditions. We observe that there are two regions of multiple positive steady states at relatively high values of substrate glycerol concentration in feed medium.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Chemical Engineering
International Journal of Chemical Engineering Chemical Engineering-General Chemical Engineering
CiteScore
4.00
自引率
3.70%
发文量
95
审稿时长
14 weeks
期刊介绍: International Journal of Chemical Engineering publishes papers on technologies for the production, processing, transportation, and use of chemicals on a large scale. Studies typically relate to processes within chemical and energy industries, especially for production of food, pharmaceuticals, fuels, and chemical feedstocks. Topics of investigation cover plant design and operation, process design and analysis, control and reaction engineering, as well as hazard mitigation and safety measures. As well as original research, International Journal of Chemical Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
期刊最新文献
A Review of Stochastic Optimization Algorithms Applied in Food Engineering Analysis Study of Available Alternatives for Mitigation of Aromatic Hydrocarbon Emissions from a Glycol Dehydration Unit Effective Removal of Ibuprofen from Aqueous Solution Using Cationic Surface-Active Agents in Dissolved Air-Flotation Process Effect of inside Surface Baffle Conditions on Just Drawdown Impeller Rotational Speed A Study on the Valorization of Rice Straw into Different Value-Added Products and Biofuels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1