具有圆锥奇点的电磁逆问题的可见性、不可见性和唯一恢复

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED Inverse Problems and Imaging Pub Date : 2023-01-01 DOI:10.3934/ipi.2023043
Huaian Diao, Xiaoxu Fei, Hongyu Liu, Ke Yang
{"title":"具有圆锥奇点的电磁逆问题的可见性、不可见性和唯一恢复","authors":"Huaian Diao, Xiaoxu Fei, Hongyu Liu, Ke Yang","doi":"10.3934/ipi.2023043","DOIUrl":null,"url":null,"abstract":"In this paper, we study time-harmonic electromagnetic scattering in two scenarios, where the anomalous scatterer is either a pair of electromagnetic sources or an inhomogeneous medium, both with compact supports. We are mainly concerned with the geometrical inverse scattering problem of recovering the support of the scatterer, independent of its physical contents, by a single far-field measurement. It is assumed that the support of the scatterer (locally) possesses a conical singularity. We establish a local characterisation of the scatterer when invisibility/transparency occurs, showing that its characteristic parameters must vanish locally around the conical point. Using this characterisation, we establish several local and global uniqueness results for the aforementioned inverse scattering problems, showing that visibility must imply unique recovery. In the process, we also establish the local vanishing property of the electromagnetic transmission eigenfunctions around a conical point under the Hölder regularity or a regularity condition in terms of Herglotz approximation.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Visibility, invisibility and unique recovery of inverse electromagnetic problems with conical singularities\",\"authors\":\"Huaian Diao, Xiaoxu Fei, Hongyu Liu, Ke Yang\",\"doi\":\"10.3934/ipi.2023043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study time-harmonic electromagnetic scattering in two scenarios, where the anomalous scatterer is either a pair of electromagnetic sources or an inhomogeneous medium, both with compact supports. We are mainly concerned with the geometrical inverse scattering problem of recovering the support of the scatterer, independent of its physical contents, by a single far-field measurement. It is assumed that the support of the scatterer (locally) possesses a conical singularity. We establish a local characterisation of the scatterer when invisibility/transparency occurs, showing that its characteristic parameters must vanish locally around the conical point. Using this characterisation, we establish several local and global uniqueness results for the aforementioned inverse scattering problems, showing that visibility must imply unique recovery. In the process, we also establish the local vanishing property of the electromagnetic transmission eigenfunctions around a conical point under the Hölder regularity or a regularity condition in terms of Herglotz approximation.\",\"PeriodicalId\":50274,\"journal\":{\"name\":\"Inverse Problems and Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/ipi.2023043\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ipi.2023043","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了两种情况下的时谐电磁散射,即异常散射体是一对电磁源或非均匀介质,两者都有紧致支撑。我们主要关注的是通过单次远场测量恢复散射体的支持而不依赖其物理内容的几何逆散射问题。假设散射体的支撑(局部)具有锥形奇点。当不可见/透明发生时,我们建立了散射体的局部特征,表明其特征参数必须在圆锥形点附近局部消失。利用这一特性,我们建立了上述反散射问题的几个局部和全局唯一性结果,表明可见性必须意味着唯一恢复。在此过程中,我们还利用Herglotz近似建立了在Hölder正则性或正则性条件下,围绕圆锥形点的电磁传输本征函数的局部消失性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visibility, invisibility and unique recovery of inverse electromagnetic problems with conical singularities
In this paper, we study time-harmonic electromagnetic scattering in two scenarios, where the anomalous scatterer is either a pair of electromagnetic sources or an inhomogeneous medium, both with compact supports. We are mainly concerned with the geometrical inverse scattering problem of recovering the support of the scatterer, independent of its physical contents, by a single far-field measurement. It is assumed that the support of the scatterer (locally) possesses a conical singularity. We establish a local characterisation of the scatterer when invisibility/transparency occurs, showing that its characteristic parameters must vanish locally around the conical point. Using this characterisation, we establish several local and global uniqueness results for the aforementioned inverse scattering problems, showing that visibility must imply unique recovery. In the process, we also establish the local vanishing property of the electromagnetic transmission eigenfunctions around a conical point under the Hölder regularity or a regularity condition in terms of Herglotz approximation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inverse Problems and Imaging
Inverse Problems and Imaging 数学-物理:数学物理
CiteScore
2.50
自引率
0.00%
发文量
55
审稿时长
>12 weeks
期刊介绍: Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing. This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.
期刊最新文献
Inverse problems of identifying the time-dependent source coefficient for subelliptic heat equations Imaging of conductivity distribution based on a combined reconstruction method in brain electrical impedance tomography Deblurring photographs of characters using deep neural networks Determination of piecewise homogeneous sources for elastic and electromagnetic waves Nonlinearity parameter imaging in the frequency domain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1