{"title":"基于高阶随机离散时间格式的地球物理流动模型lsamvy区域诊断","authors":"Pierre-Marie Boulvard, Etienne Mémin","doi":"10.3934/fods.2023011","DOIUrl":null,"url":null,"abstract":"In this paper we characterize numerically through two criteria the Lévy area related to unresolved fluctuation velocities associated to a stochastic coarse-scale representation of geophysical fluid flow dynamics. We study in particular whether or not the process associated to the random unresolved velocity components exhibits a Lévy area corresponding to a Wiener process, and if the law of this process can reasonably be approached by a centered Dirac measure. This exploration enables us to answer positively to a conjecture made for the constitution of high-order discrete time evolution schemes for stochastic representation defined from stochastic transport.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"14 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Diagnostic of the Lévy area for geophysical flow models in view of defining high order stochastic discrete-time schemes\",\"authors\":\"Pierre-Marie Boulvard, Etienne Mémin\",\"doi\":\"10.3934/fods.2023011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we characterize numerically through two criteria the Lévy area related to unresolved fluctuation velocities associated to a stochastic coarse-scale representation of geophysical fluid flow dynamics. We study in particular whether or not the process associated to the random unresolved velocity components exhibits a Lévy area corresponding to a Wiener process, and if the law of this process can reasonably be approached by a centered Dirac measure. This exploration enables us to answer positively to a conjecture made for the constitution of high-order discrete time evolution schemes for stochastic representation defined from stochastic transport.\",\"PeriodicalId\":73054,\"journal\":{\"name\":\"Foundations of data science (Springfield, Mo.)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of data science (Springfield, Mo.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/fods.2023011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/fods.2023011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Diagnostic of the Lévy area for geophysical flow models in view of defining high order stochastic discrete-time schemes
In this paper we characterize numerically through two criteria the Lévy area related to unresolved fluctuation velocities associated to a stochastic coarse-scale representation of geophysical fluid flow dynamics. We study in particular whether or not the process associated to the random unresolved velocity components exhibits a Lévy area corresponding to a Wiener process, and if the law of this process can reasonably be approached by a centered Dirac measure. This exploration enables us to answer positively to a conjecture made for the constitution of high-order discrete time evolution schemes for stochastic representation defined from stochastic transport.