William Yik, Sam J. Silva, Andrew Geiss, Duncan Watson-Parris
{"title":"探索随机连线神经网络在气候模型仿真中的应用","authors":"William Yik, Sam J. Silva, Andrew Geiss, Duncan Watson-Parris","doi":"10.1175/aies-d-22-0088.1","DOIUrl":null,"url":null,"abstract":"Abstract Exploring the climate impacts of various anthropogenic emissions scenarios is key to making informed decisions for climate change mitigation and adaptation. State-of-the-art Earth system models can provide detailed insight into these impacts but have a large associated computational cost on a per-scenario basis. This large computational burden has driven recent interest in developing cheap machine learning models for the task of climate model emulation. In this paper, we explore the efficacy of randomly wired neural networks for this task. We describe how they can be constructed and compare them with their standard feedforward counterparts using the ClimateBench dataset. Specifically, we replace the serially connected dense layers in multilayer perceptrons, convolutional neural networks, and convolutional long short-term memory networks with randomly wired dense layers and assess the impact on model performance for models with 1 million and 10 million parameters. We find that models with less-complex architectures see the greatest performance improvement with the addition of random wiring (up to 30.4% for multilayer perceptrons). Furthermore, of 24 different model architecture, parameter count, and prediction task combinations, only one had a statistically significant performance deficit in randomly wired networks relative to their standard counterparts, with 14 cases showing statistically significant improvement. We also find no significant difference in prediction speed between networks with standard feedforward dense layers and those with randomly wired layers. These findings indicate that randomly wired neural networks may be suitable direct replacements for traditional dense layers in many standard models. Significance Statement Modeling various greenhouse gas and aerosol emissions scenarios is important for both understanding climate change and making informed political and economic decisions. However, accomplishing this with large Earth system models is a complex and computationally expensive task. As such, data-driven machine learning models have risen in prevalence as cheap emulators of Earth system models. In this work, we explore a special type of machine learning model called randomly wired neural networks and find that they perform competitively for the task of climate model emulation. This indicates that future machine learning models for emulation may significantly benefit from using randomly wired neural networks as opposed to their more-standard counterparts.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Randomly Wired Neural Networks for Climate Model Emulation\",\"authors\":\"William Yik, Sam J. Silva, Andrew Geiss, Duncan Watson-Parris\",\"doi\":\"10.1175/aies-d-22-0088.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Exploring the climate impacts of various anthropogenic emissions scenarios is key to making informed decisions for climate change mitigation and adaptation. State-of-the-art Earth system models can provide detailed insight into these impacts but have a large associated computational cost on a per-scenario basis. This large computational burden has driven recent interest in developing cheap machine learning models for the task of climate model emulation. In this paper, we explore the efficacy of randomly wired neural networks for this task. We describe how they can be constructed and compare them with their standard feedforward counterparts using the ClimateBench dataset. Specifically, we replace the serially connected dense layers in multilayer perceptrons, convolutional neural networks, and convolutional long short-term memory networks with randomly wired dense layers and assess the impact on model performance for models with 1 million and 10 million parameters. We find that models with less-complex architectures see the greatest performance improvement with the addition of random wiring (up to 30.4% for multilayer perceptrons). Furthermore, of 24 different model architecture, parameter count, and prediction task combinations, only one had a statistically significant performance deficit in randomly wired networks relative to their standard counterparts, with 14 cases showing statistically significant improvement. We also find no significant difference in prediction speed between networks with standard feedforward dense layers and those with randomly wired layers. These findings indicate that randomly wired neural networks may be suitable direct replacements for traditional dense layers in many standard models. Significance Statement Modeling various greenhouse gas and aerosol emissions scenarios is important for both understanding climate change and making informed political and economic decisions. However, accomplishing this with large Earth system models is a complex and computationally expensive task. As such, data-driven machine learning models have risen in prevalence as cheap emulators of Earth system models. In this work, we explore a special type of machine learning model called randomly wired neural networks and find that they perform competitively for the task of climate model emulation. This indicates that future machine learning models for emulation may significantly benefit from using randomly wired neural networks as opposed to their more-standard counterparts.\",\"PeriodicalId\":94369,\"journal\":{\"name\":\"Artificial intelligence for the earth systems\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence for the earth systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/aies-d-22-0088.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/aies-d-22-0088.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring Randomly Wired Neural Networks for Climate Model Emulation
Abstract Exploring the climate impacts of various anthropogenic emissions scenarios is key to making informed decisions for climate change mitigation and adaptation. State-of-the-art Earth system models can provide detailed insight into these impacts but have a large associated computational cost on a per-scenario basis. This large computational burden has driven recent interest in developing cheap machine learning models for the task of climate model emulation. In this paper, we explore the efficacy of randomly wired neural networks for this task. We describe how they can be constructed and compare them with their standard feedforward counterparts using the ClimateBench dataset. Specifically, we replace the serially connected dense layers in multilayer perceptrons, convolutional neural networks, and convolutional long short-term memory networks with randomly wired dense layers and assess the impact on model performance for models with 1 million and 10 million parameters. We find that models with less-complex architectures see the greatest performance improvement with the addition of random wiring (up to 30.4% for multilayer perceptrons). Furthermore, of 24 different model architecture, parameter count, and prediction task combinations, only one had a statistically significant performance deficit in randomly wired networks relative to their standard counterparts, with 14 cases showing statistically significant improvement. We also find no significant difference in prediction speed between networks with standard feedforward dense layers and those with randomly wired layers. These findings indicate that randomly wired neural networks may be suitable direct replacements for traditional dense layers in many standard models. Significance Statement Modeling various greenhouse gas and aerosol emissions scenarios is important for both understanding climate change and making informed political and economic decisions. However, accomplishing this with large Earth system models is a complex and computationally expensive task. As such, data-driven machine learning models have risen in prevalence as cheap emulators of Earth system models. In this work, we explore a special type of machine learning model called randomly wired neural networks and find that they perform competitively for the task of climate model emulation. This indicates that future machine learning models for emulation may significantly benefit from using randomly wired neural networks as opposed to their more-standard counterparts.