{"title":"基于人机共生的工业5.0智能制造系统设计框架","authors":"Margherita Peruzzini, Elisa Prati, Marcello Pelicciari","doi":"10.1080/0951192x.2023.2257634","DOIUrl":null,"url":null,"abstract":"ABSTRACTThe concept of Industry 5.0 (I5.0) promotes the human-centricity as the core value behind the evolution of smart manufacturing systems (SMSs), based on a novel use of digital technologies in the design and management of modern industrial systems to take up the socio-technical challenges. In this context, the paper proposes a Smart Manufacturing Systems Design (SMSD) framework enabling I5.0, based on the human-automation symbiosis. Thanks to an ‘Augmented Digital Twin’ (ADT) able to integrate and digitize all the entities of the factory (i.e. machines, robots, environments, interfaces, people), AI-driven applications can be built to support the user domain and make people and machines co-evolve thanks to a systematic data sharing between physical and digital assets (e.g. digital twin, virtual mock-ups, human-machine interfaces), optimizing factory productivity and workers wellbeing. In this framework, machines and humans can both generate knowledge and learn from each other, generating a virtuous co-evolution, supporting the understanding of the human-machine interplay and the creation of an effective collaboration between people and SMSs. The framework was conceived and validated involving four industrial companies, belonging to diverse sectors, interested in overcoming the current limits of I4.0 lines by including the human factors for future SMS management.KEYWORDS: Industry 5.0Operator 4.0Operator 5.0augmented digital twinsmart manufacturing systemshuman-automation symbiosis AcknowledgementsThis research is funded by the European Community under two HORIZON 2020 programmes, grant agreement No. 958303 (PeneloPe) https://penelope-project.eu/ and grant agreement No. 101091780 (DaCapo) https://www.dacapo-project.eu/.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the H2020 Industrial Leadership [958303].","PeriodicalId":13907,"journal":{"name":"International Journal of Computer Integrated Manufacturing","volume":"49 1","pages":"0"},"PeriodicalIF":3.7000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A framework to design smart manufacturing systems for Industry 5.0 based on the human-automation symbiosis\",\"authors\":\"Margherita Peruzzini, Elisa Prati, Marcello Pelicciari\",\"doi\":\"10.1080/0951192x.2023.2257634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTThe concept of Industry 5.0 (I5.0) promotes the human-centricity as the core value behind the evolution of smart manufacturing systems (SMSs), based on a novel use of digital technologies in the design and management of modern industrial systems to take up the socio-technical challenges. In this context, the paper proposes a Smart Manufacturing Systems Design (SMSD) framework enabling I5.0, based on the human-automation symbiosis. Thanks to an ‘Augmented Digital Twin’ (ADT) able to integrate and digitize all the entities of the factory (i.e. machines, robots, environments, interfaces, people), AI-driven applications can be built to support the user domain and make people and machines co-evolve thanks to a systematic data sharing between physical and digital assets (e.g. digital twin, virtual mock-ups, human-machine interfaces), optimizing factory productivity and workers wellbeing. In this framework, machines and humans can both generate knowledge and learn from each other, generating a virtuous co-evolution, supporting the understanding of the human-machine interplay and the creation of an effective collaboration between people and SMSs. The framework was conceived and validated involving four industrial companies, belonging to diverse sectors, interested in overcoming the current limits of I4.0 lines by including the human factors for future SMS management.KEYWORDS: Industry 5.0Operator 4.0Operator 5.0augmented digital twinsmart manufacturing systemshuman-automation symbiosis AcknowledgementsThis research is funded by the European Community under two HORIZON 2020 programmes, grant agreement No. 958303 (PeneloPe) https://penelope-project.eu/ and grant agreement No. 101091780 (DaCapo) https://www.dacapo-project.eu/.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the H2020 Industrial Leadership [958303].\",\"PeriodicalId\":13907,\"journal\":{\"name\":\"International Journal of Computer Integrated Manufacturing\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Integrated Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0951192x.2023.2257634\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Integrated Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0951192x.2023.2257634","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A framework to design smart manufacturing systems for Industry 5.0 based on the human-automation symbiosis
ABSTRACTThe concept of Industry 5.0 (I5.0) promotes the human-centricity as the core value behind the evolution of smart manufacturing systems (SMSs), based on a novel use of digital technologies in the design and management of modern industrial systems to take up the socio-technical challenges. In this context, the paper proposes a Smart Manufacturing Systems Design (SMSD) framework enabling I5.0, based on the human-automation symbiosis. Thanks to an ‘Augmented Digital Twin’ (ADT) able to integrate and digitize all the entities of the factory (i.e. machines, robots, environments, interfaces, people), AI-driven applications can be built to support the user domain and make people and machines co-evolve thanks to a systematic data sharing between physical and digital assets (e.g. digital twin, virtual mock-ups, human-machine interfaces), optimizing factory productivity and workers wellbeing. In this framework, machines and humans can both generate knowledge and learn from each other, generating a virtuous co-evolution, supporting the understanding of the human-machine interplay and the creation of an effective collaboration between people and SMSs. The framework was conceived and validated involving four industrial companies, belonging to diverse sectors, interested in overcoming the current limits of I4.0 lines by including the human factors for future SMS management.KEYWORDS: Industry 5.0Operator 4.0Operator 5.0augmented digital twinsmart manufacturing systemshuman-automation symbiosis AcknowledgementsThis research is funded by the European Community under two HORIZON 2020 programmes, grant agreement No. 958303 (PeneloPe) https://penelope-project.eu/ and grant agreement No. 101091780 (DaCapo) https://www.dacapo-project.eu/.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the H2020 Industrial Leadership [958303].
期刊介绍:
International Journal of Computer Integrated Manufacturing (IJCIM) reports new research in theory and applications of computer integrated manufacturing. The scope spans mechanical and manufacturing engineering, software and computer engineering as well as automation and control engineering with a particular focus on today’s data driven manufacturing. Terms such as industry 4.0, intelligent manufacturing, digital manufacturing and cyber-physical manufacturing systems are now used to identify the area of knowledge that IJCIM has supported and shaped in its history of more than 30 years.
IJCIM continues to grow and has become a key forum for academics and industrial researchers to exchange information and ideas. In response to this interest, IJCIM is now published monthly, enabling the editors to target topical special issues; topics as diverse as digital twins, transdisciplinary engineering, cloud manufacturing, deep learning for manufacturing, service-oriented architectures, dematerialized manufacturing systems, wireless manufacturing and digital enterprise technologies to name a few.