{"title":"个性化查询扩展与上下文词嵌入","authors":"Elias Bassani, Nicola Tonellotto, Gabriella Pasi","doi":"10.1145/3624988","DOIUrl":null,"url":null,"abstract":"Personalized Query Expansion, the task of expanding queries with additional terms extracted from the user-related vocabulary, is a well-known solution to improve the retrieval performance of a system w.r.t. short queries. Recent approaches rely on word embeddings to select expansion terms from user-related texts. Although delivering promising results with former word embedding techniques, we argue that these methods are not suited for contextual word embeddings, which produce a unique vector representation for each term occurrence. In this article, we propose a Personalized Query Expansion method designed to solve the issues arising from the use of contextual word embeddings with the current Personalized Query Expansion approaches based on word embeddings. Specifically, we employ a clustering-based procedure to identify the terms that better represent the user interests and to improve the diversity of those selected for expansion, achieving improvements up to 4% w.r.t. the best-performing baseline in terms of MAP@100. Moreover, our approach outperforms previous ones in terms of efficiency, allowing us to achieve sub-millisecond expansion times even in data-rich scenarios. Finally, we introduce a novel metric to evaluate the expansion terms diversity and empirically show the unsuitability of previous approaches based on word embeddings when employed along with contextual word embeddings, which cause the selection of semantically overlapping expansion terms.","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":"12 1","pages":"0"},"PeriodicalIF":5.4000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Personalized Query Expansion with Contextual Word Embeddings\",\"authors\":\"Elias Bassani, Nicola Tonellotto, Gabriella Pasi\",\"doi\":\"10.1145/3624988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Personalized Query Expansion, the task of expanding queries with additional terms extracted from the user-related vocabulary, is a well-known solution to improve the retrieval performance of a system w.r.t. short queries. Recent approaches rely on word embeddings to select expansion terms from user-related texts. Although delivering promising results with former word embedding techniques, we argue that these methods are not suited for contextual word embeddings, which produce a unique vector representation for each term occurrence. In this article, we propose a Personalized Query Expansion method designed to solve the issues arising from the use of contextual word embeddings with the current Personalized Query Expansion approaches based on word embeddings. Specifically, we employ a clustering-based procedure to identify the terms that better represent the user interests and to improve the diversity of those selected for expansion, achieving improvements up to 4% w.r.t. the best-performing baseline in terms of MAP@100. Moreover, our approach outperforms previous ones in terms of efficiency, allowing us to achieve sub-millisecond expansion times even in data-rich scenarios. Finally, we introduce a novel metric to evaluate the expansion terms diversity and empirically show the unsuitability of previous approaches based on word embeddings when employed along with contextual word embeddings, which cause the selection of semantically overlapping expansion terms.\",\"PeriodicalId\":50936,\"journal\":{\"name\":\"ACM Transactions on Information Systems\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3624988\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3624988","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Personalized Query Expansion with Contextual Word Embeddings
Personalized Query Expansion, the task of expanding queries with additional terms extracted from the user-related vocabulary, is a well-known solution to improve the retrieval performance of a system w.r.t. short queries. Recent approaches rely on word embeddings to select expansion terms from user-related texts. Although delivering promising results with former word embedding techniques, we argue that these methods are not suited for contextual word embeddings, which produce a unique vector representation for each term occurrence. In this article, we propose a Personalized Query Expansion method designed to solve the issues arising from the use of contextual word embeddings with the current Personalized Query Expansion approaches based on word embeddings. Specifically, we employ a clustering-based procedure to identify the terms that better represent the user interests and to improve the diversity of those selected for expansion, achieving improvements up to 4% w.r.t. the best-performing baseline in terms of MAP@100. Moreover, our approach outperforms previous ones in terms of efficiency, allowing us to achieve sub-millisecond expansion times even in data-rich scenarios. Finally, we introduce a novel metric to evaluate the expansion terms diversity and empirically show the unsuitability of previous approaches based on word embeddings when employed along with contextual word embeddings, which cause the selection of semantically overlapping expansion terms.
期刊介绍:
The ACM Transactions on Information Systems (TOIS) publishes papers on information retrieval (such as search engines, recommender systems) that contain:
new principled information retrieval models or algorithms with sound empirical validation;
observational, experimental and/or theoretical studies yielding new insights into information retrieval or information seeking;
accounts of applications of existing information retrieval techniques that shed light on the strengths and weaknesses of the techniques;
formalization of new information retrieval or information seeking tasks and of methods for evaluating the performance on those tasks;
development of content (text, image, speech, video, etc) analysis methods to support information retrieval and information seeking;
development of computational models of user information preferences and interaction behaviors;
creation and analysis of evaluation methodologies for information retrieval and information seeking; or
surveys of existing work that propose a significant synthesis.
The information retrieval scope of ACM Transactions on Information Systems (TOIS) appeals to industry practitioners for its wealth of creative ideas, and to academic researchers for its descriptions of their colleagues'' work.