Matthew B. Wilson, Adam L. Houston, Conrad L. Ziegler, Daniel M. Stechman, Brian Argrow, Eric W. Frew, Sara Swenson, Erik Rasmussen, Michael Coniglio
{"title":"2019年6月8日TORUS观测到的近距离超级单体的环境和风暴规模控制","authors":"Matthew B. Wilson, Adam L. Houston, Conrad L. Ziegler, Daniel M. Stechman, Brian Argrow, Eric W. Frew, Sara Swenson, Erik Rasmussen, Michael Coniglio","doi":"10.1175/mwr-d-23-0002.1","DOIUrl":null,"url":null,"abstract":"Abstract The Targeted Observation by Radars and UAS of Supercells (TORUS) field project observed two supercells on 8 June 2019 in northwestern Kansas and far eastern Colorado. Although these storms occurred in close spatial and temporal proximity, their evolutions were markedly different. The first storm struggled to maintain itself and eventually dissipated. Meanwhile, the second supercell developed just after and slightly to the south of where the first storm dissipated, and then tracked over almost the same location before rapidly intensifying and going on to produce several tornadoes. The objective of this study is to determine why the first storm struggled to survive and failed to produce mesocyclonic tornadoes while the second storm thrived and was cyclically tornadic. Analysis relies on observations collected by the TORUS project–including UAS transects and profiles, mobile soundings, surface mobile mesonet transects, and dual-Doppler wind syntheses from the NOAA P-3 tail Doppler radars. Our results indicate that rapid changes in the low-level wind profile, the second supercell’s interaction with two mesoscale boundaries, an interaction with a rapidly-intensifying new updraft just to its west, and the influence of a strong outflow surge likely account for much of the second supercell’s increased strength and tornado production. The rapid evolution of the low-level wind profile may have been most important in raising the probability of the second supercell becoming tornadic, with the new updraft and the outflow surge leading to a favorable storm-scale evolution that increased this probability further.","PeriodicalId":18824,"journal":{"name":"Monthly Weather Review","volume":"27 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental and Storm-Scale Controls on Close Proximity Supercells Observed by TORUS on 8 June 2019\",\"authors\":\"Matthew B. Wilson, Adam L. Houston, Conrad L. Ziegler, Daniel M. Stechman, Brian Argrow, Eric W. Frew, Sara Swenson, Erik Rasmussen, Michael Coniglio\",\"doi\":\"10.1175/mwr-d-23-0002.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Targeted Observation by Radars and UAS of Supercells (TORUS) field project observed two supercells on 8 June 2019 in northwestern Kansas and far eastern Colorado. Although these storms occurred in close spatial and temporal proximity, their evolutions were markedly different. The first storm struggled to maintain itself and eventually dissipated. Meanwhile, the second supercell developed just after and slightly to the south of where the first storm dissipated, and then tracked over almost the same location before rapidly intensifying and going on to produce several tornadoes. The objective of this study is to determine why the first storm struggled to survive and failed to produce mesocyclonic tornadoes while the second storm thrived and was cyclically tornadic. Analysis relies on observations collected by the TORUS project–including UAS transects and profiles, mobile soundings, surface mobile mesonet transects, and dual-Doppler wind syntheses from the NOAA P-3 tail Doppler radars. Our results indicate that rapid changes in the low-level wind profile, the second supercell’s interaction with two mesoscale boundaries, an interaction with a rapidly-intensifying new updraft just to its west, and the influence of a strong outflow surge likely account for much of the second supercell’s increased strength and tornado production. The rapid evolution of the low-level wind profile may have been most important in raising the probability of the second supercell becoming tornadic, with the new updraft and the outflow surge leading to a favorable storm-scale evolution that increased this probability further.\",\"PeriodicalId\":18824,\"journal\":{\"name\":\"Monthly Weather Review\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monthly Weather Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/mwr-d-23-0002.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Weather Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/mwr-d-23-0002.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Environmental and Storm-Scale Controls on Close Proximity Supercells Observed by TORUS on 8 June 2019
Abstract The Targeted Observation by Radars and UAS of Supercells (TORUS) field project observed two supercells on 8 June 2019 in northwestern Kansas and far eastern Colorado. Although these storms occurred in close spatial and temporal proximity, their evolutions were markedly different. The first storm struggled to maintain itself and eventually dissipated. Meanwhile, the second supercell developed just after and slightly to the south of where the first storm dissipated, and then tracked over almost the same location before rapidly intensifying and going on to produce several tornadoes. The objective of this study is to determine why the first storm struggled to survive and failed to produce mesocyclonic tornadoes while the second storm thrived and was cyclically tornadic. Analysis relies on observations collected by the TORUS project–including UAS transects and profiles, mobile soundings, surface mobile mesonet transects, and dual-Doppler wind syntheses from the NOAA P-3 tail Doppler radars. Our results indicate that rapid changes in the low-level wind profile, the second supercell’s interaction with two mesoscale boundaries, an interaction with a rapidly-intensifying new updraft just to its west, and the influence of a strong outflow surge likely account for much of the second supercell’s increased strength and tornado production. The rapid evolution of the low-level wind profile may have been most important in raising the probability of the second supercell becoming tornadic, with the new updraft and the outflow surge leading to a favorable storm-scale evolution that increased this probability further.
期刊介绍:
Monthly Weather Review (MWR) (ISSN: 0027-0644; eISSN: 1520-0493) publishes research relevant to the analysis and prediction of observed atmospheric circulations and physics, including technique development, data assimilation, model validation, and relevant case studies. This research includes numerical and data assimilation techniques that apply to the atmosphere and/or ocean environments. MWR also addresses phenomena having seasonal and subseasonal time scales.