水体分层和混合对浮游植物功能群的影响——以西坑水库为例

IF 1 4区 环境科学与生态学 Q4 WATER RESOURCES Water SA Pub Date : 2023-10-27 DOI:10.17159/wsa/2023.v49.i4.4032
None Yunhao Bai, None Tinglin Huang, None Pengcheng Yang
{"title":"水体分层和混合对浮游植物功能群的影响——以西坑水库为例","authors":"None Yunhao Bai, None Tinglin Huang, None Pengcheng Yang","doi":"10.17159/wsa/2023.v49.i4.4032","DOIUrl":null,"url":null,"abstract":"A shift in reservoir stratification and mixing significantly affects the water column ecosystem, which in turn leads to changes in phytoplankton abundance and community structure. To explore the effects of stratification and mixing on the phytoplankton community structure of a diversion reservoir, a 1-year survey was divided into a stratification period in 2020, a mixing period in 2020, and a stratification period in 2021, and redundancy analysis (RDA), variance partitioning analysis (VPA) and Pearson correlation analysis were used to analyse the key drivers affecting the phytoplankton functional groups, using Xikeng Reservoir as a case study. During the study period, 8 phyla, 69 genera and 9 major functional groups were observed in this reservoir. The dominant functional groups varied significantly, being X1 in the stratified period in 2020; P and D in the mixing period in 2020; and D, X1, and M in the stratified period in 2021. The phytoplankton diversity index was greater in the mixing period than in the stratification period, in agreement with the results of the aquatic ecological status evaluation (Q index, higher in the mixing period than in the stratification period). However, phytoplankton diversity of Xikeng Reservoir was of limited value in assessing the degree of water pollution, so should be considered in combination with the Q index. Water temperature (WT), mixing depth (Zmix), nitrogen–phosphorus ratio (N/P), and total nitrogen (TN) were important drivers of phytoplankton functional group dynamics in different periods. The study provides a valuable reference for assessing the relationship between environmental factors and phytoplankton communities, as well as for the evaluation and conservation of aquatic ecosystems in southern China's water diversion reservoirs.","PeriodicalId":23623,"journal":{"name":"Water SA","volume":"148 6","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of water stratification and mixing on phytoplankton functional groups: a case study of Xikeng Reservoir, China\",\"authors\":\"None Yunhao Bai, None Tinglin Huang, None Pengcheng Yang\",\"doi\":\"10.17159/wsa/2023.v49.i4.4032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A shift in reservoir stratification and mixing significantly affects the water column ecosystem, which in turn leads to changes in phytoplankton abundance and community structure. To explore the effects of stratification and mixing on the phytoplankton community structure of a diversion reservoir, a 1-year survey was divided into a stratification period in 2020, a mixing period in 2020, and a stratification period in 2021, and redundancy analysis (RDA), variance partitioning analysis (VPA) and Pearson correlation analysis were used to analyse the key drivers affecting the phytoplankton functional groups, using Xikeng Reservoir as a case study. During the study period, 8 phyla, 69 genera and 9 major functional groups were observed in this reservoir. The dominant functional groups varied significantly, being X1 in the stratified period in 2020; P and D in the mixing period in 2020; and D, X1, and M in the stratified period in 2021. The phytoplankton diversity index was greater in the mixing period than in the stratification period, in agreement with the results of the aquatic ecological status evaluation (Q index, higher in the mixing period than in the stratification period). However, phytoplankton diversity of Xikeng Reservoir was of limited value in assessing the degree of water pollution, so should be considered in combination with the Q index. Water temperature (WT), mixing depth (Zmix), nitrogen–phosphorus ratio (N/P), and total nitrogen (TN) were important drivers of phytoplankton functional group dynamics in different periods. The study provides a valuable reference for assessing the relationship between environmental factors and phytoplankton communities, as well as for the evaluation and conservation of aquatic ecosystems in southern China's water diversion reservoirs.\",\"PeriodicalId\":23623,\"journal\":{\"name\":\"Water SA\",\"volume\":\"148 6\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water SA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17159/wsa/2023.v49.i4.4032\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water SA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17159/wsa/2023.v49.i4.4032","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

水库分层和混合的变化对水柱生态系统产生显著影响,进而导致浮游植物丰度和群落结构的变化。为探讨分层和混合对某引水库浮游植物群落结构的影响,以西沟水库为例,采用冗余分析(RDA)、方差划分分析(VPA)和Pearson相关分析分析影响浮游植物功能群的关键驱动因素,将1年的调查分为2020年的分层期、2020年的混合期和2021年的分层期。研究期间共发现8门69属9个主要功能类群。优势官能团变化明显,2020年分层期为X1;P和D在2020年混合期;2021年分层期的D、X1、M。混合期浮游植物多样性指数大于分层期,与水体生态状况评价结果一致(Q指数,混合期高于分层期)。但西坑水库浮游植物多样性对水体污染程度评价价值有限,应与Q指数结合考虑。水温(WT)、混合深度(Zmix)、氮磷比(N/P)和总氮(TN)是不同时期浮游植物功能群动态的重要驱动因素。该研究为评价环境因子与浮游植物群落的关系,以及华南引水水库水生生态系统的评价和保护提供了有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of water stratification and mixing on phytoplankton functional groups: a case study of Xikeng Reservoir, China
A shift in reservoir stratification and mixing significantly affects the water column ecosystem, which in turn leads to changes in phytoplankton abundance and community structure. To explore the effects of stratification and mixing on the phytoplankton community structure of a diversion reservoir, a 1-year survey was divided into a stratification period in 2020, a mixing period in 2020, and a stratification period in 2021, and redundancy analysis (RDA), variance partitioning analysis (VPA) and Pearson correlation analysis were used to analyse the key drivers affecting the phytoplankton functional groups, using Xikeng Reservoir as a case study. During the study period, 8 phyla, 69 genera and 9 major functional groups were observed in this reservoir. The dominant functional groups varied significantly, being X1 in the stratified period in 2020; P and D in the mixing period in 2020; and D, X1, and M in the stratified period in 2021. The phytoplankton diversity index was greater in the mixing period than in the stratification period, in agreement with the results of the aquatic ecological status evaluation (Q index, higher in the mixing period than in the stratification period). However, phytoplankton diversity of Xikeng Reservoir was of limited value in assessing the degree of water pollution, so should be considered in combination with the Q index. Water temperature (WT), mixing depth (Zmix), nitrogen–phosphorus ratio (N/P), and total nitrogen (TN) were important drivers of phytoplankton functional group dynamics in different periods. The study provides a valuable reference for assessing the relationship between environmental factors and phytoplankton communities, as well as for the evaluation and conservation of aquatic ecosystems in southern China's water diversion reservoirs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water SA
Water SA 环境科学-水资源
CiteScore
2.80
自引率
6.70%
发文量
46
审稿时长
18-36 weeks
期刊介绍: WaterSA publishes refereed, original work in all branches of water science, technology and engineering. This includes water resources development; the hydrological cycle; surface hydrology; geohydrology and hydrometeorology; limnology; salinisation; treatment and management of municipal and industrial water and wastewater; treatment and disposal of sewage sludge; environmental pollution control; water quality and treatment; aquaculture in terms of its impact on the water resource; agricultural water science; etc. Water SA is the WRC’s accredited scientific journal which contains original research articles and review articles on all aspects of water science, technology, engineering and policy. Water SA has been in publication since 1975 and includes articles from both local and international authors. The journal is issued quarterly (4 editions per year).
期刊最新文献
Effects of leachate concentration, carbon dioxide and aeration flow rate on chlorophyll and carotenoid productivity and bioremediation potential of the microalga Chlorella minutissima Experimental study on optimum performance of two-stage air-heated bubble-column humidification–dehumidification system Occurrence of multidrug-resistant Escherichia coli and antibiotic resistance genes in a wastewater treatment plant and its associated river water in Harare, Zimbabwe A baseline study on the prevalence of microplastics in South African drinking water: from source to distribution Effect of water stratification and mixing on phytoplankton functional groups: a case study of Xikeng Reservoir, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1