Vince Láng, Dimitra Dafnaki, István Balla, Ivan Czako, Sándor Csenki, Gergő Péter Kovács, Kennedy Mutua, Dora Szlatenyi, László Vulcz, Benjamin Bukombe
{"title":"喀尔巴阡盆地对气候变化模式的双重种植适应机制","authors":"Vince Láng, Dimitra Dafnaki, István Balla, Ivan Czako, Sándor Csenki, Gergő Péter Kovács, Kennedy Mutua, Dora Szlatenyi, László Vulcz, Benjamin Bukombe","doi":"10.1080/09064710.2023.2257218","DOIUrl":null,"url":null,"abstract":"Adapting agriculture to climate change is essential for sustainable food production. However, the development of suitable adaptation mechanisms requires a clear understanding of the plant-climate interaction. The number of growing degree days (GDD) is a good proxy for understanding plant-climate interrelationship and farm productivity. Here, using a 2-year experiment of barley-sweet corn double cropping (DC) system and 20-year climate and yield data, we found that barley and sweet corn GDD and productivity were strongly related to changes in climate patterns. Furthermore, we found a positive effect of the barley-sweet corn DC system on farm productivity (18.5 and 5.6 tonnes. ha−1 for DC and single cropping respectively) and return on investment (1.8; 1.4 as benefit:cost ratios for DC and single cropping system respectively). Altogether the results of this study suggest that the winter barley-sweet corn double cropping system is a potential strategy to boost farm productivity as well as an adaptation mechanism to be considered for the changing climate in the study region.","PeriodicalId":40817,"journal":{"name":"Acta Agriculturae Scandinavica Section B-Soil and Plant Science","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double cropping as an adaptation mechanism to climate change patterns in the Carpathian Basin\",\"authors\":\"Vince Láng, Dimitra Dafnaki, István Balla, Ivan Czako, Sándor Csenki, Gergő Péter Kovács, Kennedy Mutua, Dora Szlatenyi, László Vulcz, Benjamin Bukombe\",\"doi\":\"10.1080/09064710.2023.2257218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adapting agriculture to climate change is essential for sustainable food production. However, the development of suitable adaptation mechanisms requires a clear understanding of the plant-climate interaction. The number of growing degree days (GDD) is a good proxy for understanding plant-climate interrelationship and farm productivity. Here, using a 2-year experiment of barley-sweet corn double cropping (DC) system and 20-year climate and yield data, we found that barley and sweet corn GDD and productivity were strongly related to changes in climate patterns. Furthermore, we found a positive effect of the barley-sweet corn DC system on farm productivity (18.5 and 5.6 tonnes. ha−1 for DC and single cropping respectively) and return on investment (1.8; 1.4 as benefit:cost ratios for DC and single cropping system respectively). Altogether the results of this study suggest that the winter barley-sweet corn double cropping system is a potential strategy to boost farm productivity as well as an adaptation mechanism to be considered for the changing climate in the study region.\",\"PeriodicalId\":40817,\"journal\":{\"name\":\"Acta Agriculturae Scandinavica Section B-Soil and Plant Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Agriculturae Scandinavica Section B-Soil and Plant Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09064710.2023.2257218\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Agriculturae Scandinavica Section B-Soil and Plant Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09064710.2023.2257218","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Double cropping as an adaptation mechanism to climate change patterns in the Carpathian Basin
Adapting agriculture to climate change is essential for sustainable food production. However, the development of suitable adaptation mechanisms requires a clear understanding of the plant-climate interaction. The number of growing degree days (GDD) is a good proxy for understanding plant-climate interrelationship and farm productivity. Here, using a 2-year experiment of barley-sweet corn double cropping (DC) system and 20-year climate and yield data, we found that barley and sweet corn GDD and productivity were strongly related to changes in climate patterns. Furthermore, we found a positive effect of the barley-sweet corn DC system on farm productivity (18.5 and 5.6 tonnes. ha−1 for DC and single cropping respectively) and return on investment (1.8; 1.4 as benefit:cost ratios for DC and single cropping system respectively). Altogether the results of this study suggest that the winter barley-sweet corn double cropping system is a potential strategy to boost farm productivity as well as an adaptation mechanism to be considered for the changing climate in the study region.
期刊介绍:
Acta Agriculturæ Scandinavica Section B publishes original research in applied soil and plant science with special attention given to to crop production in agri- and horticultural systems. We welcome manuscripts dealing with:
Climate smart and sustainable crop production systems
Water and nutrient efficiency
Soil conservation and productivity
Precise agriculture systems
Applications of bio- and nanotechnology
Digitalisation and robotics
Soil-plant interactions
Acta Agriculturæ Scandinavica, Section B – Soil & Plant Science forms part of a series of titles published on behalf of the Nordic Association of Agricultural Science (NJF). The series also includes Section A - Animal Science .