{"title":"茶树内生真菌对芘和蒽的层状修复作用Kuntze)在斯里兰卡","authors":"Lanka Undugoda, Kasun Thambugala, Sagarika Kannangara, Jayantha Munasinghe, Nadeeka Premarathna, Nadeema Dharmasiri","doi":"10.1080/0028825x.2023.2258829","DOIUrl":null,"url":null,"abstract":"ABSTRACTPolyaromatic hydrocarbons (PAHs) released from vehicular emissions and oil refineries deposit on the phyllosphere, compromising the quality of leaf-based food products by posing many health issues. Nevertheless, the tea phyllosphere harbours a variety of endophytes that are highly effective at degrading polyaromatic hydrocarbons, anthracene, and pyrene. The present study attempts to analyse the pyrene and anthracene degrading capability of phyllosphere endophytic fungi that inhabit Camellia sinensis (L.) Kuntze leaves. The frequency of occurrence of endophytic fungi in different leaf tissue layers was examined using light and scanning electron microscopy (SEM). The best pyrene and anthracene degrading strains were selected based on the High-Performance Liquid Chromatography (HPLC) results, and further kinetic assays. Light microscopy and SEM observations highlighted a heterogeneous endophytic fungal distribution among leaf tissue layers; the upper epidermis had the highest fungal distribution compared to other leaf layers. HPLC results revealed that Phyllosticta capitalensis, Colletotrichum gloeosporioides, Colletotrichum siamense, Pseudopestalotiopsis chinensis, and Daldinia eschscholtzii, have higher pyrene and anthracene degradation respectively and their PAH degradation kinetics follow the first-order kinetic model. The best anthracene and pyrene degrader, P. capitalensis showed the lowest half-life. The present investigation highlights the potential of P. capitalensis, the best pyrene and anthracene degrader that can remediate PAHs deposited on the phyllosphere of tea leaves.KEYWORDS: Bioremediationfungal endophyteskineticspollutantspolyaromatic hydrocarbons (PAHs) AcknowledgmentsThe authors wish to acknowledge the Department of Plant and Molecular Biology, University of Kelaniya, Sri Lanka, for providing facilities to carry out this research component.Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":19317,"journal":{"name":"New Zealand Journal of Botany","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phylloremediation of pyrene and anthracene by endophytic fungi inhabiting tea leaves ( <i>Camellia sinensis</i> (L.) Kuntze) in Sri Lanka\",\"authors\":\"Lanka Undugoda, Kasun Thambugala, Sagarika Kannangara, Jayantha Munasinghe, Nadeeka Premarathna, Nadeema Dharmasiri\",\"doi\":\"10.1080/0028825x.2023.2258829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTPolyaromatic hydrocarbons (PAHs) released from vehicular emissions and oil refineries deposit on the phyllosphere, compromising the quality of leaf-based food products by posing many health issues. Nevertheless, the tea phyllosphere harbours a variety of endophytes that are highly effective at degrading polyaromatic hydrocarbons, anthracene, and pyrene. The present study attempts to analyse the pyrene and anthracene degrading capability of phyllosphere endophytic fungi that inhabit Camellia sinensis (L.) Kuntze leaves. The frequency of occurrence of endophytic fungi in different leaf tissue layers was examined using light and scanning electron microscopy (SEM). The best pyrene and anthracene degrading strains were selected based on the High-Performance Liquid Chromatography (HPLC) results, and further kinetic assays. Light microscopy and SEM observations highlighted a heterogeneous endophytic fungal distribution among leaf tissue layers; the upper epidermis had the highest fungal distribution compared to other leaf layers. HPLC results revealed that Phyllosticta capitalensis, Colletotrichum gloeosporioides, Colletotrichum siamense, Pseudopestalotiopsis chinensis, and Daldinia eschscholtzii, have higher pyrene and anthracene degradation respectively and their PAH degradation kinetics follow the first-order kinetic model. The best anthracene and pyrene degrader, P. capitalensis showed the lowest half-life. The present investigation highlights the potential of P. capitalensis, the best pyrene and anthracene degrader that can remediate PAHs deposited on the phyllosphere of tea leaves.KEYWORDS: Bioremediationfungal endophyteskineticspollutantspolyaromatic hydrocarbons (PAHs) AcknowledgmentsThe authors wish to acknowledge the Department of Plant and Molecular Biology, University of Kelaniya, Sri Lanka, for providing facilities to carry out this research component.Disclosure statementNo potential conflict of interest was reported by the author(s).\",\"PeriodicalId\":19317,\"journal\":{\"name\":\"New Zealand Journal of Botany\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Zealand Journal of Botany\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0028825x.2023.2258829\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Botany","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0028825x.2023.2258829","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Phylloremediation of pyrene and anthracene by endophytic fungi inhabiting tea leaves ( Camellia sinensis (L.) Kuntze) in Sri Lanka
ABSTRACTPolyaromatic hydrocarbons (PAHs) released from vehicular emissions and oil refineries deposit on the phyllosphere, compromising the quality of leaf-based food products by posing many health issues. Nevertheless, the tea phyllosphere harbours a variety of endophytes that are highly effective at degrading polyaromatic hydrocarbons, anthracene, and pyrene. The present study attempts to analyse the pyrene and anthracene degrading capability of phyllosphere endophytic fungi that inhabit Camellia sinensis (L.) Kuntze leaves. The frequency of occurrence of endophytic fungi in different leaf tissue layers was examined using light and scanning electron microscopy (SEM). The best pyrene and anthracene degrading strains were selected based on the High-Performance Liquid Chromatography (HPLC) results, and further kinetic assays. Light microscopy and SEM observations highlighted a heterogeneous endophytic fungal distribution among leaf tissue layers; the upper epidermis had the highest fungal distribution compared to other leaf layers. HPLC results revealed that Phyllosticta capitalensis, Colletotrichum gloeosporioides, Colletotrichum siamense, Pseudopestalotiopsis chinensis, and Daldinia eschscholtzii, have higher pyrene and anthracene degradation respectively and their PAH degradation kinetics follow the first-order kinetic model. The best anthracene and pyrene degrader, P. capitalensis showed the lowest half-life. The present investigation highlights the potential of P. capitalensis, the best pyrene and anthracene degrader that can remediate PAHs deposited on the phyllosphere of tea leaves.KEYWORDS: Bioremediationfungal endophyteskineticspollutantspolyaromatic hydrocarbons (PAHs) AcknowledgmentsThe authors wish to acknowledge the Department of Plant and Molecular Biology, University of Kelaniya, Sri Lanka, for providing facilities to carry out this research component.Disclosure statementNo potential conflict of interest was reported by the author(s).
期刊介绍:
The New Zealand Journal of Botany publishes original research papers, review papers, perspectives, short communications, forum articles, letter and book reviews. We welcome submissions relevant to all aspects of the botany, mycology, and phycology of the South Pacific, Australia, South America, and Southern Africa. The journal’s subject matter encompasses biosystematics and biogeography, ecology, physiology, biochemistry, genetics, reproductive biology, structure and development, taxonomy, ethnobotany, palaeobotany, bryology, lichenology, mycology, plant pathology, and phycology.