热带气旋与环境垂直风切变相互作用的研究进展

IF 3 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of the Atmospheric Sciences Pub Date : 2023-10-27 DOI:10.1175/jas-d-23-0022.1
Rosimar Rios-Berrios, Peter M. Finocchio, Joshua J. Alland, Xiaomin Chen, Michael S. Fischer, Stephanie N. Stevenson, Dandan Tao
{"title":"热带气旋与环境垂直风切变相互作用的研究进展","authors":"Rosimar Rios-Berrios, Peter M. Finocchio, Joshua J. Alland, Xiaomin Chen, Michael S. Fischer, Stephanie N. Stevenson, Dandan Tao","doi":"10.1175/jas-d-23-0022.1","DOIUrl":null,"url":null,"abstract":"Abstract Tropical cyclone (TC) structure and intensity are strongly modulated by interactions with deep-layer vertical wind shear (VWS)—the vector difference between horizontal winds at 200 and 850 hPa. This paper presents a comprehensive review of more than a century of research on TC-VWS interactions. The literature broadly agrees that a TC vortex becomes vertically tilted, precipitation organizes into a wavenumber-one asymmetric pattern, and thermal and kinematic asymmetries emerge when a TC encounters an environmental sheared flow. However, these responses depend on other factors, including the magnitude and direction of horizontal winds at other vertical levels between 200 and 850 hPa, the amount and location of dry environmental air, and the underlying sea-surface temperature. While early studies investigated how VWS weakens TCs, an emerging line of research has focused on understanding how TCs intensify under moderate and strong VWS (i.e., shear magnitudes greater than 5 m s −1 ). Modeling and observational studies have identified four pathways to intensification: vortex tilt reduction, vortex reformation, axisymmetrization of precipitation, and outflow blocking. These pathways may not be uniquely different because convection and vortex asymmetries are strongly coupled to each other. Besides discussing these topics, this review presents open questions and recommendations for future research on TC-VWS interactions.","PeriodicalId":17231,"journal":{"name":"Journal of the Atmospheric Sciences","volume":"87 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review of the Interactions between Tropical Cyclones and Environmental Vertical Wind Shear\",\"authors\":\"Rosimar Rios-Berrios, Peter M. Finocchio, Joshua J. Alland, Xiaomin Chen, Michael S. Fischer, Stephanie N. Stevenson, Dandan Tao\",\"doi\":\"10.1175/jas-d-23-0022.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Tropical cyclone (TC) structure and intensity are strongly modulated by interactions with deep-layer vertical wind shear (VWS)—the vector difference between horizontal winds at 200 and 850 hPa. This paper presents a comprehensive review of more than a century of research on TC-VWS interactions. The literature broadly agrees that a TC vortex becomes vertically tilted, precipitation organizes into a wavenumber-one asymmetric pattern, and thermal and kinematic asymmetries emerge when a TC encounters an environmental sheared flow. However, these responses depend on other factors, including the magnitude and direction of horizontal winds at other vertical levels between 200 and 850 hPa, the amount and location of dry environmental air, and the underlying sea-surface temperature. While early studies investigated how VWS weakens TCs, an emerging line of research has focused on understanding how TCs intensify under moderate and strong VWS (i.e., shear magnitudes greater than 5 m s −1 ). Modeling and observational studies have identified four pathways to intensification: vortex tilt reduction, vortex reformation, axisymmetrization of precipitation, and outflow blocking. These pathways may not be uniquely different because convection and vortex asymmetries are strongly coupled to each other. Besides discussing these topics, this review presents open questions and recommendations for future research on TC-VWS interactions.\",\"PeriodicalId\":17231,\"journal\":{\"name\":\"Journal of the Atmospheric Sciences\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Atmospheric Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/jas-d-23-0022.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Atmospheric Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/jas-d-23-0022.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

热带气旋(TC)的结构和强度受其与深层垂直风切变(VWS)的相互作用的强烈调节,即200和850 hPa水平风的矢量差。本文全面回顾了一个多世纪以来关于TC-VWS相互作用的研究。文献大致同意TC漩涡垂直倾斜,降水组织成波数为1的不对称模式,当TC遇到环境剪切流时,会出现热不对称和运动不对称。然而,这些响应取决于其他因素,包括200至850 hPa之间其他垂直高度的水平风的大小和方向,干燥环境空气的数量和位置,以及海底表面温度。虽然早期的研究调查了VWS如何削弱tc,但新兴的研究重点是了解中度和强VWS(即大于5 m s - 1的剪切震级)下tc如何增强。模拟和观测研究已经确定了四种增强途径:旋涡倾斜减少、旋涡改造、降水轴对称化和流出流阻塞。这些路径可能不是唯一不同的,因为对流和涡旋的不对称是彼此强耦合的。除了讨论这些主题外,本文还对TC-VWS相互作用的未来研究提出了开放性问题和建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Review of the Interactions between Tropical Cyclones and Environmental Vertical Wind Shear
Abstract Tropical cyclone (TC) structure and intensity are strongly modulated by interactions with deep-layer vertical wind shear (VWS)—the vector difference between horizontal winds at 200 and 850 hPa. This paper presents a comprehensive review of more than a century of research on TC-VWS interactions. The literature broadly agrees that a TC vortex becomes vertically tilted, precipitation organizes into a wavenumber-one asymmetric pattern, and thermal and kinematic asymmetries emerge when a TC encounters an environmental sheared flow. However, these responses depend on other factors, including the magnitude and direction of horizontal winds at other vertical levels between 200 and 850 hPa, the amount and location of dry environmental air, and the underlying sea-surface temperature. While early studies investigated how VWS weakens TCs, an emerging line of research has focused on understanding how TCs intensify under moderate and strong VWS (i.e., shear magnitudes greater than 5 m s −1 ). Modeling and observational studies have identified four pathways to intensification: vortex tilt reduction, vortex reformation, axisymmetrization of precipitation, and outflow blocking. These pathways may not be uniquely different because convection and vortex asymmetries are strongly coupled to each other. Besides discussing these topics, this review presents open questions and recommendations for future research on TC-VWS interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Atmospheric Sciences
Journal of the Atmospheric Sciences 地学-气象与大气科学
CiteScore
0.20
自引率
22.60%
发文量
196
审稿时长
3-6 weeks
期刊介绍: The Journal of the Atmospheric Sciences (JAS) publishes basic research related to the physics, dynamics, and chemistry of the atmosphere of Earth and other planets, with emphasis on the quantitative and deductive aspects of the subject. The links provide detailed information for readers, authors, reviewers, and those who wish to submit a manuscript for consideration.
期刊最新文献
Synchronous Papillary and Follicular Carcinoma with Scalp and Nodal Metastasis: A case report with review of literature. Characteristics of Turbulence Intermittency, Fine Structures, and Flux Correction in the Taklimakan Desert Tropospheric thermal forcing of the stratosphere through quasi-balanced dynamics Asymmetry of the Distribution of Vertical Velocities of the Extratropical Atmosphere in Theory, Models and Reanalysis A new pathway for tornadogenesis exposed by numerical simulations of supercells in turbulent environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1