鲁棒尖端间隙测量:一种通用的原位动态校准方法在两级高速涡轮上的演示

IF 1.4 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Engineering for Gas Turbines and Power-transactions of The Asme Pub Date : 2023-10-27 DOI:10.1115/1.4063886
Antonio Castillo Sauca, Guillermo Paniagua
{"title":"鲁棒尖端间隙测量:一种通用的原位动态校准方法在两级高速涡轮上的演示","authors":"Antonio Castillo Sauca, Guillermo Paniagua","doi":"10.1115/1.4063886","DOIUrl":null,"url":null,"abstract":"Abstract Tip clearance monitoring is essential for the active health monitoring of turbomachinery and their development towards more efficient systems. Proper sensor calibration is paramount to this purpose, frequently being a time-consuming process. This paper introduces a novel in-situ dynamic calibration routine for high-frequency capacitance sensor measurements for tip clearance. The method predicts the calibration curve based on a single clearance measurement, the evolution of the acquired signal through various operational conditions, and the dimensional features of the multi-rim squealer-tip passing blades. The experimental data was obtained at 2MHz in a state-of-the-art two-stage high-speed turbine operated by the Purdue Experimental Turbine aerothermal Lab. A description of the empirical setup is provided, emphasizing the capacitance probes, the conditioning and acquisition systems, the metrology instruments used, and other ancillary instrumentation relevant to the calibration procedure. The prior filtering and data identification from the raw signal is detailed. The step-by-step development of the algorithm is presented, including justification of the curves imposed by the method. The resulting calibrations are provided, achieving accuracies of a few microns. The results are compared against previously used calibration techniques, emphasizing the potential advantages of the presented routine. Finally, the time-resolved tip clearance is analyzed against high frequency aerothermal data within the gap region, identifying relationships between the tip gap, unsteady pressure, and heat flux on the shroud.","PeriodicalId":15685,"journal":{"name":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Tip Gap Measurements: A Universal In-Situ Dynamic Calibration & Demonstration In A Two-Stage High-Speed Turbine\",\"authors\":\"Antonio Castillo Sauca, Guillermo Paniagua\",\"doi\":\"10.1115/1.4063886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Tip clearance monitoring is essential for the active health monitoring of turbomachinery and their development towards more efficient systems. Proper sensor calibration is paramount to this purpose, frequently being a time-consuming process. This paper introduces a novel in-situ dynamic calibration routine for high-frequency capacitance sensor measurements for tip clearance. The method predicts the calibration curve based on a single clearance measurement, the evolution of the acquired signal through various operational conditions, and the dimensional features of the multi-rim squealer-tip passing blades. The experimental data was obtained at 2MHz in a state-of-the-art two-stage high-speed turbine operated by the Purdue Experimental Turbine aerothermal Lab. A description of the empirical setup is provided, emphasizing the capacitance probes, the conditioning and acquisition systems, the metrology instruments used, and other ancillary instrumentation relevant to the calibration procedure. The prior filtering and data identification from the raw signal is detailed. The step-by-step development of the algorithm is presented, including justification of the curves imposed by the method. The resulting calibrations are provided, achieving accuracies of a few microns. The results are compared against previously used calibration techniques, emphasizing the potential advantages of the presented routine. Finally, the time-resolved tip clearance is analyzed against high frequency aerothermal data within the gap region, identifying relationships between the tip gap, unsteady pressure, and heat flux on the shroud.\",\"PeriodicalId\":15685,\"journal\":{\"name\":\"Journal of Engineering for Gas Turbines and Power-transactions of The Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering for Gas Turbines and Power-transactions of The Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063886\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063886","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

叶尖间隙监测是叶轮机械主动健康监测和向更高效系统发展的必要条件。适当的传感器校准对于这一目的至关重要,这通常是一个耗时的过程。本文介绍了一种用于高频电容传感器尖端间隙测量的原位动态校准方法。该方法基于单次间隙测量、获取的信号在不同工况下的演变以及多环尖尖通过叶片的尺寸特征来预测校准曲线。实验数据是在由普渡实验涡轮气动热实验室操作的最先进的两级高速涡轮上以2MHz频率获得的。提供了经验设置的描述,强调电容探头,调节和采集系统,使用的计量仪器,以及与校准过程相关的其他辅助仪器。详细介绍了原始信号的先验滤波和数据识别。介绍了该算法的逐步发展,包括该方法所施加的曲线的证明。提供了结果校准,实现了几微米的精度。结果与以前使用的校准技术进行了比较,强调了所提出的常规的潜在优势。最后,根据间隙区域内的高频气动热数据分析了时间分辨的叶尖间隙,确定了叶尖间隙、非定常压力和叶冠上的热流密度之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Tip Gap Measurements: A Universal In-Situ Dynamic Calibration & Demonstration In A Two-Stage High-Speed Turbine
Abstract Tip clearance monitoring is essential for the active health monitoring of turbomachinery and their development towards more efficient systems. Proper sensor calibration is paramount to this purpose, frequently being a time-consuming process. This paper introduces a novel in-situ dynamic calibration routine for high-frequency capacitance sensor measurements for tip clearance. The method predicts the calibration curve based on a single clearance measurement, the evolution of the acquired signal through various operational conditions, and the dimensional features of the multi-rim squealer-tip passing blades. The experimental data was obtained at 2MHz in a state-of-the-art two-stage high-speed turbine operated by the Purdue Experimental Turbine aerothermal Lab. A description of the empirical setup is provided, emphasizing the capacitance probes, the conditioning and acquisition systems, the metrology instruments used, and other ancillary instrumentation relevant to the calibration procedure. The prior filtering and data identification from the raw signal is detailed. The step-by-step development of the algorithm is presented, including justification of the curves imposed by the method. The resulting calibrations are provided, achieving accuracies of a few microns. The results are compared against previously used calibration techniques, emphasizing the potential advantages of the presented routine. Finally, the time-resolved tip clearance is analyzed against high frequency aerothermal data within the gap region, identifying relationships between the tip gap, unsteady pressure, and heat flux on the shroud.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
20.00%
发文量
292
审稿时长
2.0 months
期刊介绍: The ASME Journal of Engineering for Gas Turbines and Power publishes archival-quality papers in the areas of gas and steam turbine technology, nuclear engineering, internal combustion engines, and fossil power generation. It covers a broad spectrum of practical topics of interest to industry. Subject areas covered include: thermodynamics; fluid mechanics; heat transfer; and modeling; propulsion and power generation components and systems; combustion, fuels, and emissions; nuclear reactor systems and components; thermal hydraulics; heat exchangers; nuclear fuel technology and waste management; I. C. engines for marine, rail, and power generation; steam and hydro power generation; advanced cycles for fossil energy generation; pollution control and environmental effects.
期刊最新文献
Effect of Inert Species On the Static and Dynamic Stability of a Piloted, Swirl-Stabilized Flame Advanced Modelling of Flow and Heat Transfer in Rotating Disc Cavities Using Open-Source CFD Reacting Flow Prediction of the Low-Swirl Lifted Flame in an Aeronautical Combustor with Angular Air Supply Effect of Unsteady Fan-Intake Interaction On Short Intake Design Intermittency of Flame Structure and Thermo-acoustic Behavior in a Staged Multipoint Injector Using Liquid Fuel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1