{"title":"甘蔗渣纤维素基水凝胶去除纺织废水中亚甲基蓝的研究","authors":"Bayisa Dame Tesema, Tariku Ayala Chamada","doi":"10.1155/2023/2313874","DOIUrl":null,"url":null,"abstract":"The textile industry is one of the biggest water consumption production areas and its waste is essential to cause ecological contamination as they deliver questionable color, weighty metal, and degradable natural and inorganic results whenever arranged without treatment. The natural treatment strategy is not broadly drilled because of its intricate method. In the adsorption method, for example, actuated carbon was limited by prudence of its significant expense and low adsorption limit. This study has completed the combination and portrayal of bagasse cellulose-based hydrogel for the expulsion of methylene blue color from textile industry wastewater. The study furnishes a major critical contributing option for biodegradable adsorption material by supplanting the conventional color evacuation method with a nonconventional one that showsthe attainability of horticultural waste for a union of the hydrogel as opposed to noninexhaustible petrochemical based and show the capability of involving hydrogel for the expulsion of harmful contamination from the textile industry. The hydrogel was combined utilizing free extreme polymerization that can utilize acrylic corrosive (AA) and citrus extract as cross-connecting specialists and monomers individually. FTIR, XRD, and conduct metric titration are the primary hardware utilized for the portrayal of the hydrogel. The cycle boundaries that can influence the color evacuation proficiency of hydrogel, for example, pH, contact time, and temperature have been examined. A focal composite plan by rotatable component is the technique used to browse reaction surface strategies to control the tests with the communication of cycle boundaries.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":"108 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Bagasse Cellulose-Based Hydrogel for Methylene Blue Removal from Textile Industry Wastewater\",\"authors\":\"Bayisa Dame Tesema, Tariku Ayala Chamada\",\"doi\":\"10.1155/2023/2313874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The textile industry is one of the biggest water consumption production areas and its waste is essential to cause ecological contamination as they deliver questionable color, weighty metal, and degradable natural and inorganic results whenever arranged without treatment. The natural treatment strategy is not broadly drilled because of its intricate method. In the adsorption method, for example, actuated carbon was limited by prudence of its significant expense and low adsorption limit. This study has completed the combination and portrayal of bagasse cellulose-based hydrogel for the expulsion of methylene blue color from textile industry wastewater. The study furnishes a major critical contributing option for biodegradable adsorption material by supplanting the conventional color evacuation method with a nonconventional one that showsthe attainability of horticultural waste for a union of the hydrogel as opposed to noninexhaustible petrochemical based and show the capability of involving hydrogel for the expulsion of harmful contamination from the textile industry. The hydrogel was combined utilizing free extreme polymerization that can utilize acrylic corrosive (AA) and citrus extract as cross-connecting specialists and monomers individually. FTIR, XRD, and conduct metric titration are the primary hardware utilized for the portrayal of the hydrogel. The cycle boundaries that can influence the color evacuation proficiency of hydrogel, for example, pH, contact time, and temperature have been examined. A focal composite plan by rotatable component is the technique used to browse reaction surface strategies to control the tests with the communication of cycle boundaries.\",\"PeriodicalId\":13921,\"journal\":{\"name\":\"International Journal of Chemical Engineering\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/2313874\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/2313874","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Analysis of Bagasse Cellulose-Based Hydrogel for Methylene Blue Removal from Textile Industry Wastewater
The textile industry is one of the biggest water consumption production areas and its waste is essential to cause ecological contamination as they deliver questionable color, weighty metal, and degradable natural and inorganic results whenever arranged without treatment. The natural treatment strategy is not broadly drilled because of its intricate method. In the adsorption method, for example, actuated carbon was limited by prudence of its significant expense and low adsorption limit. This study has completed the combination and portrayal of bagasse cellulose-based hydrogel for the expulsion of methylene blue color from textile industry wastewater. The study furnishes a major critical contributing option for biodegradable adsorption material by supplanting the conventional color evacuation method with a nonconventional one that showsthe attainability of horticultural waste for a union of the hydrogel as opposed to noninexhaustible petrochemical based and show the capability of involving hydrogel for the expulsion of harmful contamination from the textile industry. The hydrogel was combined utilizing free extreme polymerization that can utilize acrylic corrosive (AA) and citrus extract as cross-connecting specialists and monomers individually. FTIR, XRD, and conduct metric titration are the primary hardware utilized for the portrayal of the hydrogel. The cycle boundaries that can influence the color evacuation proficiency of hydrogel, for example, pH, contact time, and temperature have been examined. A focal composite plan by rotatable component is the technique used to browse reaction surface strategies to control the tests with the communication of cycle boundaries.
期刊介绍:
International Journal of Chemical Engineering publishes papers on technologies for the production, processing, transportation, and use of chemicals on a large scale. Studies typically relate to processes within chemical and energy industries, especially for production of food, pharmaceuticals, fuels, and chemical feedstocks. Topics of investigation cover plant design and operation, process design and analysis, control and reaction engineering, as well as hazard mitigation and safety measures.
As well as original research, International Journal of Chemical Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.