0 ~ k膨胀泊松回归模型及其应用

Hadi Saboori, Mahdi Doostparast
{"title":"0 ~ k膨胀泊松回归模型及其应用","authors":"Hadi Saboori, Mahdi Doostparast","doi":"10.1007/s44199-023-00067-3","DOIUrl":null,"url":null,"abstract":"Abstract In the count data set, the frequency of some points may occur more than expected under the standard data analysis models. Indeed, in many situations, the frequencies of zero and of some other points tend to be higher than those of the Poisson. Adapting existing models for analyzing inflated observations has been studied in the literature. A method for modeling the inflated data is the inflated distribution. In this paper, we extend this inflated distribution. Indeed, if inflations occur in three or more of the support point, then the previous models are not suitable. We propose a model based on zero, one, $$\\ldots ,$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> and k inflated points with probabilities $$w_{0},w_1,\\ldots ,$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>w</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>w</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> and $$w_{k},$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>w</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> respectively. By choosing the appropriate values for the weights $$w_{0},\\ldots ,w_{k},$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>w</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>w</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> various inflated distributions, such as the zero-inflated, zero–one-inflated, and zero– k -inflated distributions, are derived as special cases of the proposed model in this paper. Various illustrative examples and real data sets are analyzed using the obtained results.","PeriodicalId":45080,"journal":{"name":"Journal of Statistical Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero to k Inflated Poisson Regression Models with Applications\",\"authors\":\"Hadi Saboori, Mahdi Doostparast\",\"doi\":\"10.1007/s44199-023-00067-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the count data set, the frequency of some points may occur more than expected under the standard data analysis models. Indeed, in many situations, the frequencies of zero and of some other points tend to be higher than those of the Poisson. Adapting existing models for analyzing inflated observations has been studied in the literature. A method for modeling the inflated data is the inflated distribution. In this paper, we extend this inflated distribution. Indeed, if inflations occur in three or more of the support point, then the previous models are not suitable. We propose a model based on zero, one, $$\\\\ldots ,$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> and k inflated points with probabilities $$w_{0},w_1,\\\\ldots ,$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mi>w</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>w</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> and $$w_{k},$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mi>w</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> respectively. By choosing the appropriate values for the weights $$w_{0},\\\\ldots ,w_{k},$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mi>w</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>w</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> various inflated distributions, such as the zero-inflated, zero–one-inflated, and zero– k -inflated distributions, are derived as special cases of the proposed model in this paper. Various illustrative examples and real data sets are analyzed using the obtained results.\",\"PeriodicalId\":45080,\"journal\":{\"name\":\"Journal of Statistical Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44199-023-00067-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44199-023-00067-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要在计数数据集中,在标准数据分析模型下,某些点的出现频率可能会超出预期。的确,在许多情况下,零点和其他点的频率往往比泊松的频率高。已在文献中研究了适应现有模型来分析膨胀观测。对膨胀数据建模的一种方法是膨胀分布。在本文中,我们扩展了这个膨胀分布。事实上,如果通货膨胀出现在三个或更多的支撑点,那么以前的模型就不合适了。我们提出了一个基于0、1、$$\ldots ,$$…和k个膨胀点的模型,分别具有$$w_{0},w_1,\ldots ,$$ w 0、w 1、…和$$w_{k},$$ w k的概率。通过为权重$$w_{0},\ldots ,w_{k},$$ w 0,…,w k选择合适的值,可以推导出各种膨胀分布,如0 -膨胀分布,0 - 1 -膨胀分布和0 - k -膨胀分布,作为本文提出的模型的特殊情况。利用所得结果对各种实例和实际数据集进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Zero to k Inflated Poisson Regression Models with Applications
Abstract In the count data set, the frequency of some points may occur more than expected under the standard data analysis models. Indeed, in many situations, the frequencies of zero and of some other points tend to be higher than those of the Poisson. Adapting existing models for analyzing inflated observations has been studied in the literature. A method for modeling the inflated data is the inflated distribution. In this paper, we extend this inflated distribution. Indeed, if inflations occur in three or more of the support point, then the previous models are not suitable. We propose a model based on zero, one, $$\ldots ,$$ , and k inflated points with probabilities $$w_{0},w_1,\ldots ,$$ w 0 , w 1 , , and $$w_{k},$$ w k , respectively. By choosing the appropriate values for the weights $$w_{0},\ldots ,w_{k},$$ w 0 , , w k , various inflated distributions, such as the zero-inflated, zero–one-inflated, and zero– k -inflated distributions, are derived as special cases of the proposed model in this paper. Various illustrative examples and real data sets are analyzed using the obtained results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
13
审稿时长
13 weeks
期刊最新文献
The Transformed MG-Extended Exponential Distribution: Properties and Applications Utilizing Repetitive Sampling in the Construction of a Control Chart for Lindley Distribution with Time Truncation Deriving the Distribution and Exploring the Utility of Partial $$R^2$$ in the Era of Big Data Neutrosophic Topp-Leone Distribution for Interval-Valued Data Analysis Topp-Leone Exponentiated Pareto Distribution: Properties and Application to Covid-19 Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1