CRISPR/ cas9辅助基因治疗的最新进展

Apeksha Srivastava, Shikha Chauhan, Vishal Ahuja
{"title":"CRISPR/ cas9辅助基因治疗的最新进展","authors":"Apeksha Srivastava, Shikha Chauhan, Vishal Ahuja","doi":"10.33640/2405-609x.3330","DOIUrl":null,"url":null,"abstract":"CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeats) is an exponentially growing tool with wide-spread applications in therapeutics like gene modifications that focus on altering the hereditary material to repair or eliminate any defective gene-causing diseases like cancer, AIDS (Acquired immunodeficiency syndrome), etc. It also includes the identification of the target sequence with the help of sgRNA followed by the substitution of a malfunction-ing gene with a normal version. It offers high efficiency, specificity, and post-gene-editing efficacy, but have also some off-target impressions, and immunogenic effects. The contribution of CRISPR/Cas9 has already been proved primarily in in-vitro studies using animal germ cell lines but translation in in-vivo models is still not much supported due to ethi-cal considerations. The recent advances include studies and clinical trials focusing on the treatment of various diseases of genetic origin. For instance, CRISPR gene knock-in technique was applied for in-vivo Leber Congenital Amaurosis 10 treatment, where CRISPR components were delivered via sub-retinal injection to correct the mutation in CE9290. The current paper recapitulates the capability of CRISPR/Cas9 in in-vivo gene therapy for various disorders like cancer, AIDS, sickle cell disease and the most recent COVID-19. The insights presented herein are poised to contribute signifi-cantly to the advancement of the field, fostering a deeper understanding of CRISPR/Cas9 technology and accelerating its clinical transition. Ultimately, this review paper serves as a valuable resource for researchers, clinicians, and policy-makers invested in the continued evolution of gene therapy and responsible utilization of CRISPR/Cas9 for human welfare","PeriodicalId":17782,"journal":{"name":"Karbala International Journal of Modern Science","volume":"256 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in CRISPR/Cas9-assisted gene therapy\",\"authors\":\"Apeksha Srivastava, Shikha Chauhan, Vishal Ahuja\",\"doi\":\"10.33640/2405-609x.3330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeats) is an exponentially growing tool with wide-spread applications in therapeutics like gene modifications that focus on altering the hereditary material to repair or eliminate any defective gene-causing diseases like cancer, AIDS (Acquired immunodeficiency syndrome), etc. It also includes the identification of the target sequence with the help of sgRNA followed by the substitution of a malfunction-ing gene with a normal version. It offers high efficiency, specificity, and post-gene-editing efficacy, but have also some off-target impressions, and immunogenic effects. The contribution of CRISPR/Cas9 has already been proved primarily in in-vitro studies using animal germ cell lines but translation in in-vivo models is still not much supported due to ethi-cal considerations. The recent advances include studies and clinical trials focusing on the treatment of various diseases of genetic origin. For instance, CRISPR gene knock-in technique was applied for in-vivo Leber Congenital Amaurosis 10 treatment, where CRISPR components were delivered via sub-retinal injection to correct the mutation in CE9290. The current paper recapitulates the capability of CRISPR/Cas9 in in-vivo gene therapy for various disorders like cancer, AIDS, sickle cell disease and the most recent COVID-19. The insights presented herein are poised to contribute signifi-cantly to the advancement of the field, fostering a deeper understanding of CRISPR/Cas9 technology and accelerating its clinical transition. Ultimately, this review paper serves as a valuable resource for researchers, clinicians, and policy-makers invested in the continued evolution of gene therapy and responsible utilization of CRISPR/Cas9 for human welfare\",\"PeriodicalId\":17782,\"journal\":{\"name\":\"Karbala International Journal of Modern Science\",\"volume\":\"256 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Karbala International Journal of Modern Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33640/2405-609x.3330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Karbala International Journal of Modern Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33640/2405-609x.3330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

CRISPR/Cas9(聚集规律间隔短回语重复序列)是一种指数增长的工具,广泛应用于基因修饰等治疗领域,其重点是改变遗传物质,以修复或消除任何有缺陷的基因引起的疾病,如癌症、艾滋病(获得性免疫缺陷综合征)等。它还包括在sgRNA的帮助下鉴定靶序列,然后用正常版本替换故障基因。它具有高效率、特异性和基因编辑后的功效,但也有一些脱靶印象和免疫原性作用。CRISPR/Cas9的贡献已经主要在使用动物生殖细胞系的体外研究中得到证实,但由于伦理考虑,在体内模型中的翻译仍然不太支持。最近的进展包括研究和临床试验,重点是治疗各种遗传疾病。例如,CRISPR基因敲入技术被应用于体内Leber先天性黑朦10治疗,其中通过视网膜下注射传递CRISPR成分以纠正CE9290的突变。这篇论文概述了CRISPR/Cas9在体内基因治疗各种疾病的能力,如癌症、艾滋病、镰状细胞病和最近的COVID-19。本文提出的见解将为该领域的进步做出重大贡献,促进对CRISPR/Cas9技术的更深入理解,并加速其临床过渡。最终,这篇综述论文为研究人员、临床医生和政策制定者提供了宝贵的资源,他们致力于基因治疗的持续发展和对CRISPR/Cas9的负责任利用,以造福人类
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent advances in CRISPR/Cas9-assisted gene therapy
CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeats) is an exponentially growing tool with wide-spread applications in therapeutics like gene modifications that focus on altering the hereditary material to repair or eliminate any defective gene-causing diseases like cancer, AIDS (Acquired immunodeficiency syndrome), etc. It also includes the identification of the target sequence with the help of sgRNA followed by the substitution of a malfunction-ing gene with a normal version. It offers high efficiency, specificity, and post-gene-editing efficacy, but have also some off-target impressions, and immunogenic effects. The contribution of CRISPR/Cas9 has already been proved primarily in in-vitro studies using animal germ cell lines but translation in in-vivo models is still not much supported due to ethi-cal considerations. The recent advances include studies and clinical trials focusing on the treatment of various diseases of genetic origin. For instance, CRISPR gene knock-in technique was applied for in-vivo Leber Congenital Amaurosis 10 treatment, where CRISPR components were delivered via sub-retinal injection to correct the mutation in CE9290. The current paper recapitulates the capability of CRISPR/Cas9 in in-vivo gene therapy for various disorders like cancer, AIDS, sickle cell disease and the most recent COVID-19. The insights presented herein are poised to contribute signifi-cantly to the advancement of the field, fostering a deeper understanding of CRISPR/Cas9 technology and accelerating its clinical transition. Ultimately, this review paper serves as a valuable resource for researchers, clinicians, and policy-makers invested in the continued evolution of gene therapy and responsible utilization of CRISPR/Cas9 for human welfare
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Karbala International Journal of Modern Science
Karbala International Journal of Modern Science Multidisciplinary-Multidisciplinary
CiteScore
2.50
自引率
0.00%
发文量
54
期刊最新文献
Freedom as the Physical Notion. Mechanics of a Material Point Enhanced optoelectronics performance of hybrid self power photodetectors GO: TiO2- AD / n-Si heterojunctions The Potential Influence of Immune Modulatory Molecules (TGF-βIII and CTLA-4) in Pathogenicity of PCOS Heterogeneous Resources in Infrastructures of the Edge Network Paradigm: A Comprehensive Review Classification and removal of hazy images based on a transmission fusion strategy using the Alexnet network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1