具有参数和状态估计的非线性系统双自适应鲁棒控制

IF 1.3 4区 计算机科学 Q4 AUTOMATION & CONTROL SYSTEMS Measurement & Control Pub Date : 2023-10-10 DOI:10.1177/00202940231200956
Ye Chen, Guoliang Tao, Yitao Yao
{"title":"具有参数和状态估计的非线性系统双自适应鲁棒控制","authors":"Ye Chen, Guoliang Tao, Yitao Yao","doi":"10.1177/00202940231200956","DOIUrl":null,"url":null,"abstract":"Stabilization and learning are imperative to the high-performance feedback control of nonlinear systems. A dual adaptive robust control (DARC) scheme is proposed for nonlinear systems with model uncertainties to achieve a desired level of performance. Only the output of the nonlinear system is accessible in this work, all the states and parameters are learned online. Firstly, the DARC uses the prior physical bounds of systems to design a discontinuous projection with update rate limits which confines the bounds of parameter and state estimation. Then robustness of the nonlinear system can be guaranteed by the deterministic robust control (DRC) method. Secondly, a dual adaptive estimation mechanism (DAEM) is developed to learn the unknown parameters and states of systems. One part of the DAEM is the bounded gain forgetting (BGF) estimator, which is developed to handle inaccurate parameters and parametric variations. The other is the adaptive unscented Kalman filter (AUKF) synthesized for state estimation. The AUKF contains a statistic estimator based on the maximum a posterior (MAP) rule to estimate the unknown covariance matrix. Finally, simulation results illustrate the effectiveness of the suggested method.","PeriodicalId":49849,"journal":{"name":"Measurement & Control","volume":"89 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dual adaptive robust control for nonlinear systems with parameter and state estimation\",\"authors\":\"Ye Chen, Guoliang Tao, Yitao Yao\",\"doi\":\"10.1177/00202940231200956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stabilization and learning are imperative to the high-performance feedback control of nonlinear systems. A dual adaptive robust control (DARC) scheme is proposed for nonlinear systems with model uncertainties to achieve a desired level of performance. Only the output of the nonlinear system is accessible in this work, all the states and parameters are learned online. Firstly, the DARC uses the prior physical bounds of systems to design a discontinuous projection with update rate limits which confines the bounds of parameter and state estimation. Then robustness of the nonlinear system can be guaranteed by the deterministic robust control (DRC) method. Secondly, a dual adaptive estimation mechanism (DAEM) is developed to learn the unknown parameters and states of systems. One part of the DAEM is the bounded gain forgetting (BGF) estimator, which is developed to handle inaccurate parameters and parametric variations. The other is the adaptive unscented Kalman filter (AUKF) synthesized for state estimation. The AUKF contains a statistic estimator based on the maximum a posterior (MAP) rule to estimate the unknown covariance matrix. Finally, simulation results illustrate the effectiveness of the suggested method.\",\"PeriodicalId\":49849,\"journal\":{\"name\":\"Measurement & Control\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00202940231200956\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940231200956","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

对于非线性系统的高性能反馈控制,镇定和学习是必不可少的。针对具有模型不确定性的非线性系统,提出了一种双自适应鲁棒控制(DARC)方案。在这项工作中,只有非线性系统的输出是可访问的,所有的状态和参数都是在线学习的。首先,DARC利用系统的先验物理边界设计了具有更新速率限制的不连续投影,从而限制了参数估计和状态估计的边界。然后采用确定性鲁棒控制(DRC)方法保证非线性系统的鲁棒性。其次,提出了一种双自适应估计机制来学习系统的未知参数和状态。DAEM的一部分是有界增益遗忘(BGF)估计器,该估计器用于处理不准确的参数和参数变化。另一种是合成用于状态估计的自适应无气味卡尔曼滤波器(AUKF)。AUKF包含一个基于最大后验规则(MAP)的统计估计器,用于估计未知协方差矩阵。最后,仿真结果验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A dual adaptive robust control for nonlinear systems with parameter and state estimation
Stabilization and learning are imperative to the high-performance feedback control of nonlinear systems. A dual adaptive robust control (DARC) scheme is proposed for nonlinear systems with model uncertainties to achieve a desired level of performance. Only the output of the nonlinear system is accessible in this work, all the states and parameters are learned online. Firstly, the DARC uses the prior physical bounds of systems to design a discontinuous projection with update rate limits which confines the bounds of parameter and state estimation. Then robustness of the nonlinear system can be guaranteed by the deterministic robust control (DRC) method. Secondly, a dual adaptive estimation mechanism (DAEM) is developed to learn the unknown parameters and states of systems. One part of the DAEM is the bounded gain forgetting (BGF) estimator, which is developed to handle inaccurate parameters and parametric variations. The other is the adaptive unscented Kalman filter (AUKF) synthesized for state estimation. The AUKF contains a statistic estimator based on the maximum a posterior (MAP) rule to estimate the unknown covariance matrix. Finally, simulation results illustrate the effectiveness of the suggested method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement & Control
Measurement & Control 工程技术-仪器仪表
自引率
10.00%
发文量
164
审稿时长
>12 weeks
期刊介绍: Measurement and Control publishes peer-reviewed practical and technical research and news pieces from both the science and engineering industry and academia. Whilst focusing more broadly on topics of relevance for practitioners in instrumentation and control, the journal also includes updates on both product and business announcements and information on technical advances.
期刊最新文献
Vibration errors compensation method based on self-feature registration for the 3-D dynamic measurement of metallic sealing ring forming surface Research on imperfect condition-based maintenance strategy based on accelerated degradation process A robot path planning method using improved Harris Hawks optimization algorithm Super-twisting sliding mode finite time control of power-line inspection robot with external disturbances and input delays Research on a novel fault diagnosis method for gearbox based on matrix distance feature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1