意大利强震台网的地震背景噪声水平

IF 4.2 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Natural Hazards and Earth System Sciences Pub Date : 2023-10-10 DOI:10.5194/nhess-23-3219-2023
Simone Francesco Fornasari, Deniz Ertuncay, Giovanni Costa
{"title":"意大利强震台网的地震背景噪声水平","authors":"Simone Francesco Fornasari, Deniz Ertuncay, Giovanni Costa","doi":"10.5194/nhess-23-3219-2023","DOIUrl":null,"url":null,"abstract":"Abstract. The Italian strong-motion network monitors the seismic activity in the region, with more than 585 stations with continuous data acquisition. In this study, we determine the background seismic noise characteristics of the network by using the data collected in 2022. We analyse the spatial and temporal characteristics of the background noise. It is found that most of the stations suffer from anthropogenic noises, since the strong-motion network is designed to capture the peak ground motions in populated areas. Hence, human activities enrich the low periods of noise. Therefore, land usage of the area where the stations are located affects the background noise levels. Stations can be noisier during the day, up to 12 dB, and during the weekday, up to 5 dB, in short periods. In long periods (≥ 5 s), accelerometric stations converge to similar noise levels and there are no significant daily or weekly changes. It is found that more than half of the stations exceed the background noise model designed for strong-motion stations in Switzerland by Cauzzi and Clinton (2013) in at least one of the calculated periods. We also develop an accelerometric seismic background noise model for periods between 0.0124 and 100 s for Italy by using the power spectral densities of the network. The model is in agreement with the background noise model developed by D’Alessandro et al. (2021) using broadband data for Italy in short periods, but in long periods there is no correlation among studies.","PeriodicalId":18922,"journal":{"name":"Natural Hazards and Earth System Sciences","volume":"90 1","pages":"0"},"PeriodicalIF":4.2000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic background noise levels in the Italian strong-motion network\",\"authors\":\"Simone Francesco Fornasari, Deniz Ertuncay, Giovanni Costa\",\"doi\":\"10.5194/nhess-23-3219-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The Italian strong-motion network monitors the seismic activity in the region, with more than 585 stations with continuous data acquisition. In this study, we determine the background seismic noise characteristics of the network by using the data collected in 2022. We analyse the spatial and temporal characteristics of the background noise. It is found that most of the stations suffer from anthropogenic noises, since the strong-motion network is designed to capture the peak ground motions in populated areas. Hence, human activities enrich the low periods of noise. Therefore, land usage of the area where the stations are located affects the background noise levels. Stations can be noisier during the day, up to 12 dB, and during the weekday, up to 5 dB, in short periods. In long periods (≥ 5 s), accelerometric stations converge to similar noise levels and there are no significant daily or weekly changes. It is found that more than half of the stations exceed the background noise model designed for strong-motion stations in Switzerland by Cauzzi and Clinton (2013) in at least one of the calculated periods. We also develop an accelerometric seismic background noise model for periods between 0.0124 and 100 s for Italy by using the power spectral densities of the network. The model is in agreement with the background noise model developed by D’Alessandro et al. (2021) using broadband data for Italy in short periods, but in long periods there is no correlation among studies.\",\"PeriodicalId\":18922,\"journal\":{\"name\":\"Natural Hazards and Earth System Sciences\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Hazards and Earth System Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/nhess-23-3219-2023\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Hazards and Earth System Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/nhess-23-3219-2023","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要意大利强震网络监测该地区的地震活动,有超过585个站点连续采集数据。在本研究中,我们利用2022年收集的数据确定了网络的背景地震噪声特征。分析了背景噪声的时空特征。由于强震台网的设计是为了捕捉人口密集地区的地面运动峰值,因此大多数台站都受到人为噪声的影响。因此,人类活动丰富了低噪声期。因此,车站所在地区的土地用途会影响背景噪音水平。电台的噪音在白天可达12分贝,在工作日,在短时间内可达5分贝。在长时间内(≥5 s),加速度计站点收敛到相似的噪声水平,并且没有明显的日或周变化。研究发现,在至少一个计算周期内,超过一半的台站超过了Cauzzi和Clinton(2013)为瑞士强震台站设计的背景噪声模型。我们还利用网络的功率谱密度,开发了意大利0.0124至100秒周期的加速度地震背景噪声模型。该模型与D 'Alessandro等人(2021)在短期内使用意大利宽带数据开发的背景噪声模型一致,但在长期内,研究之间没有相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seismic background noise levels in the Italian strong-motion network
Abstract. The Italian strong-motion network monitors the seismic activity in the region, with more than 585 stations with continuous data acquisition. In this study, we determine the background seismic noise characteristics of the network by using the data collected in 2022. We analyse the spatial and temporal characteristics of the background noise. It is found that most of the stations suffer from anthropogenic noises, since the strong-motion network is designed to capture the peak ground motions in populated areas. Hence, human activities enrich the low periods of noise. Therefore, land usage of the area where the stations are located affects the background noise levels. Stations can be noisier during the day, up to 12 dB, and during the weekday, up to 5 dB, in short periods. In long periods (≥ 5 s), accelerometric stations converge to similar noise levels and there are no significant daily or weekly changes. It is found that more than half of the stations exceed the background noise model designed for strong-motion stations in Switzerland by Cauzzi and Clinton (2013) in at least one of the calculated periods. We also develop an accelerometric seismic background noise model for periods between 0.0124 and 100 s for Italy by using the power spectral densities of the network. The model is in agreement with the background noise model developed by D’Alessandro et al. (2021) using broadband data for Italy in short periods, but in long periods there is no correlation among studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Natural Hazards and Earth System Sciences
Natural Hazards and Earth System Sciences 地学-地球科学综合
CiteScore
7.60
自引率
6.50%
发文量
192
审稿时长
3.8 months
期刊介绍: Natural Hazards and Earth System Sciences (NHESS) is an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences. Embracing a holistic Earth system science approach, NHESS serves a wide and diverse community of research scientists, practitioners, and decision makers concerned with detection of natural hazards, monitoring and modelling, vulnerability and risk assessment, and the design and implementation of mitigation and adaptation strategies, including economical, societal, and educational aspects.
期刊最新文献
Slope Unit Maker (SUMak): an efficient and parameter-free algorithm for delineating slope units to improve landslide modeling Total water levels along the South Atlantic Bight during three along-shelf propagating tropical cyclones: relative contributions of storm surge and wave runup Wind as a natural hazard in Poland The role of response efficacy and self-efficacy in disaster preparedness actions for vulnerable households Climatological occurrences of hail and tornadoes associated with mesoscale convective systems in the United States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1