Julie K. Young, Amanda M. Mast, James A. Walton, Torrey Rodgers, Antoinette J. Piaggio, Daniel R. Taylor, Karen E. Mock
{"title":"直接从土狼的嘴里:通过捕食者的口腔拭子来识别猎物的基因","authors":"Julie K. Young, Amanda M. Mast, James A. Walton, Torrey Rodgers, Antoinette J. Piaggio, Daniel R. Taylor, Karen E. Mock","doi":"10.1002/wlb3.01155","DOIUrl":null,"url":null,"abstract":"Human–carnivore conflicts often involve the depredation of domestic livestock. These depredation events are rarely observed, yet mitigation typically involves identifying the species or individual involved for removal or relocation. We tested a molecular method to identify individuals involved in depredation events using mouth swabs to determine if prey DNA could be detected, and for how long. We fed mule deer Odocoileus hemionus meat to captive coyotes Canis latrans and swabbed their mouths at five predetermined intervals between 2–72 h after consumption of the deer meat. We assessed two different molecular forensic methods to analyze the saliva swabs: qPCR for species identification and microsatellites for individual prey identification. We found that qPCR analysis was highly effective, detecting the deer DNA in the coyote saliva for up to 72 h post‐deer consumption. Our results suggest that if an individual carnivore suspected of livestock depredation is captured within 72 h of a depredation incident, it is possible to confirm their potential involvement with a buccal swab and qPCR analysis. Utilizing this method could aid in more targeted and effective removal of individual problem carnivores as opposed to widespread removal of involved species.","PeriodicalId":54405,"journal":{"name":"Wildlife Biology","volume":"4 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Straight from the coyote's mouth: genetic identification of prey through oral swabs of predators\",\"authors\":\"Julie K. Young, Amanda M. Mast, James A. Walton, Torrey Rodgers, Antoinette J. Piaggio, Daniel R. Taylor, Karen E. Mock\",\"doi\":\"10.1002/wlb3.01155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human–carnivore conflicts often involve the depredation of domestic livestock. These depredation events are rarely observed, yet mitigation typically involves identifying the species or individual involved for removal or relocation. We tested a molecular method to identify individuals involved in depredation events using mouth swabs to determine if prey DNA could be detected, and for how long. We fed mule deer Odocoileus hemionus meat to captive coyotes Canis latrans and swabbed their mouths at five predetermined intervals between 2–72 h after consumption of the deer meat. We assessed two different molecular forensic methods to analyze the saliva swabs: qPCR for species identification and microsatellites for individual prey identification. We found that qPCR analysis was highly effective, detecting the deer DNA in the coyote saliva for up to 72 h post‐deer consumption. Our results suggest that if an individual carnivore suspected of livestock depredation is captured within 72 h of a depredation incident, it is possible to confirm their potential involvement with a buccal swab and qPCR analysis. Utilizing this method could aid in more targeted and effective removal of individual problem carnivores as opposed to widespread removal of involved species.\",\"PeriodicalId\":54405,\"journal\":{\"name\":\"Wildlife Biology\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wildlife Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/wlb3.01155\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wildlife Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wlb3.01155","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Straight from the coyote's mouth: genetic identification of prey through oral swabs of predators
Human–carnivore conflicts often involve the depredation of domestic livestock. These depredation events are rarely observed, yet mitigation typically involves identifying the species or individual involved for removal or relocation. We tested a molecular method to identify individuals involved in depredation events using mouth swabs to determine if prey DNA could be detected, and for how long. We fed mule deer Odocoileus hemionus meat to captive coyotes Canis latrans and swabbed their mouths at five predetermined intervals between 2–72 h after consumption of the deer meat. We assessed two different molecular forensic methods to analyze the saliva swabs: qPCR for species identification and microsatellites for individual prey identification. We found that qPCR analysis was highly effective, detecting the deer DNA in the coyote saliva for up to 72 h post‐deer consumption. Our results suggest that if an individual carnivore suspected of livestock depredation is captured within 72 h of a depredation incident, it is possible to confirm their potential involvement with a buccal swab and qPCR analysis. Utilizing this method could aid in more targeted and effective removal of individual problem carnivores as opposed to widespread removal of involved species.
期刊介绍:
WILDLIFE BIOLOGY is a high-quality scientific forum directing concise and up-to-date information to scientists, administrators, wildlife managers and conservationists. The journal encourages and welcomes original papers, short communications and reviews written in English from throughout the world. The journal accepts theoretical, empirical, and practical articles of high standard from all areas of wildlife science with the primary task of creating the scientific basis for the enhancement of wildlife management practices. Our concept of ''wildlife'' mainly includes mammal and bird species, but studies on other species or phenomena relevant to wildlife management are also of great interest. We adopt a broad concept of wildlife management, including all structures and actions with the purpose of conservation, sustainable use, and/or control of wildlife and its habitats, in order to safeguard sustainable relationships between wildlife and other human interests.