{"title":"一种实时应用中基于引导滤波器的遥感图像数据恢复算法","authors":"Prabhishek Singh, Manoj Diwakar, Debjani Ghosh, Ankit Vidyarthi, Deepak Gupta, Punit Gupta","doi":"10.1080/07038992.2023.2257323","DOIUrl":null,"url":null,"abstract":"The images captured from SAR sensors are inherently weakened by speckle noise. The SAR image processing community targeted this problem with many feature-based filters. Since SAR images are low-contrast images, edge retention is the most crucial aspect to consider. This helps in the efficient retrieval of information. This paper provides a two-step edge-preserving homomorphic SAR image despeckling technique that implements a guided filter as the first step, and a modified method of noise thresholding using the bivariate shrinkage rule and canny edge operator in the Discrete Orthonormal Stockwell Transform (DOST) domain as the second step. The use of a canny edge operator improves overall edge preservation after despeckling. The use of noise thresholding delivers the highest level of speckle reduction in the DOST domain. The detected edges are added to the residual part obtained after removing the noise to produce more informative content. According to several qualitative and quantitative criteria, the suggested approach is compared to some of the newest despeckling methods. The execution time of the proposed method is around 7.2679 seconds. Upon conducting qualitative and quantitative analysis, it has been determined that the proposed method surpasses all other despeckling methods that were compared.","PeriodicalId":48843,"journal":{"name":"Canadian Journal of Remote Sensing","volume":"43 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Algorithmic Approach towards Remote Sensing Imagery Data Restoration Using Guided Filters in Real-Time Applications\",\"authors\":\"Prabhishek Singh, Manoj Diwakar, Debjani Ghosh, Ankit Vidyarthi, Deepak Gupta, Punit Gupta\",\"doi\":\"10.1080/07038992.2023.2257323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The images captured from SAR sensors are inherently weakened by speckle noise. The SAR image processing community targeted this problem with many feature-based filters. Since SAR images are low-contrast images, edge retention is the most crucial aspect to consider. This helps in the efficient retrieval of information. This paper provides a two-step edge-preserving homomorphic SAR image despeckling technique that implements a guided filter as the first step, and a modified method of noise thresholding using the bivariate shrinkage rule and canny edge operator in the Discrete Orthonormal Stockwell Transform (DOST) domain as the second step. The use of a canny edge operator improves overall edge preservation after despeckling. The use of noise thresholding delivers the highest level of speckle reduction in the DOST domain. The detected edges are added to the residual part obtained after removing the noise to produce more informative content. According to several qualitative and quantitative criteria, the suggested approach is compared to some of the newest despeckling methods. The execution time of the proposed method is around 7.2679 seconds. Upon conducting qualitative and quantitative analysis, it has been determined that the proposed method surpasses all other despeckling methods that were compared.\",\"PeriodicalId\":48843,\"journal\":{\"name\":\"Canadian Journal of Remote Sensing\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07038992.2023.2257323\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07038992.2023.2257323","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
An Algorithmic Approach towards Remote Sensing Imagery Data Restoration Using Guided Filters in Real-Time Applications
The images captured from SAR sensors are inherently weakened by speckle noise. The SAR image processing community targeted this problem with many feature-based filters. Since SAR images are low-contrast images, edge retention is the most crucial aspect to consider. This helps in the efficient retrieval of information. This paper provides a two-step edge-preserving homomorphic SAR image despeckling technique that implements a guided filter as the first step, and a modified method of noise thresholding using the bivariate shrinkage rule and canny edge operator in the Discrete Orthonormal Stockwell Transform (DOST) domain as the second step. The use of a canny edge operator improves overall edge preservation after despeckling. The use of noise thresholding delivers the highest level of speckle reduction in the DOST domain. The detected edges are added to the residual part obtained after removing the noise to produce more informative content. According to several qualitative and quantitative criteria, the suggested approach is compared to some of the newest despeckling methods. The execution time of the proposed method is around 7.2679 seconds. Upon conducting qualitative and quantitative analysis, it has been determined that the proposed method surpasses all other despeckling methods that were compared.
期刊介绍:
Canadian Journal of Remote Sensing / Journal canadien de télédétection is a publication of the Canadian Aeronautics and Space Institute (CASI) and the official journal of the Canadian Remote Sensing Society (CRSS-SCT).
Canadian Journal of Remote Sensing provides a forum for the publication of scientific research and review articles. The journal publishes topics including sensor and algorithm development, image processing techniques and advances focused on a wide range of remote sensing applications including, but not restricted to; forestry and agriculture, ecology, hydrology and water resources, oceans and ice, geology, urban, atmosphere, and environmental science. Articles can cover local to global scales and can be directly relevant to the Canadian, or equally important, the international community. The international editorial board provides expertise in a wide range of remote sensing theory and applications.