{"title":"用于污水处理和生活垃圾发电的微生物燃料电池的开发","authors":"Tensay Kifle, Esayas Alemayehu, Chali Dereje Kitila","doi":"10.34172/ehem.2023.31","DOIUrl":null,"url":null,"abstract":"Background: The energy crisis is a growing problem around the world, requiring the creation of alternative energy sources that can generate less carbon dioxide and benefit the ecosystem. Reutilization of wastewater is becoming the emerging energy solution. Wastewater contains a large amount of organic matter that can be oxidized in microbial fuel cells (MFCs) to produce electricity. MFCs use biodegradable materials to create energy in the presence of microorganisms. Methods: Purposive sampling technique was employed to collect samples from critical polluting sources. The samples were certainly maintained in a refrigerator at 4°C. Several mixes for sample were prepared and tested analytically- for physio-chemical and bacteriological characterizations of each substrate status at pre- and post-treatment stages. Electricity generating capacity of MFCs that employing different substrates was investigated experimentally using batch reactors. The cross-sectional methodology was employed to study possible power generation. Results: The maximum voltage output of 118.93, 144.84, and 89.76 mV were produced keeping the resistance unlimited for MFC1 (urine substrate), MFC2 (blackwater substrate), and MFC3 (graywater substrate), respectively. MFC that utilized graywater as a substrate brought the tiniest quantity of electricity; however, it stood the most stable. The highest COD reduction (65.83%) in the process was reported in urine substrate and the highest BOD5 removal (69.18%) was reported in black water substrate. Conclusion: The experimental results provided a promising indication of MFCs viability, providing hope for future power generation and alternative wastewater treatment option in developing countries.","PeriodicalId":51877,"journal":{"name":"Environmental Health Engineering and Management Journal","volume":"10 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of microbial fuel cell for wastewater treatment and electricity generation using domestic wastes\",\"authors\":\"Tensay Kifle, Esayas Alemayehu, Chali Dereje Kitila\",\"doi\":\"10.34172/ehem.2023.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: The energy crisis is a growing problem around the world, requiring the creation of alternative energy sources that can generate less carbon dioxide and benefit the ecosystem. Reutilization of wastewater is becoming the emerging energy solution. Wastewater contains a large amount of organic matter that can be oxidized in microbial fuel cells (MFCs) to produce electricity. MFCs use biodegradable materials to create energy in the presence of microorganisms. Methods: Purposive sampling technique was employed to collect samples from critical polluting sources. The samples were certainly maintained in a refrigerator at 4°C. Several mixes for sample were prepared and tested analytically- for physio-chemical and bacteriological characterizations of each substrate status at pre- and post-treatment stages. Electricity generating capacity of MFCs that employing different substrates was investigated experimentally using batch reactors. The cross-sectional methodology was employed to study possible power generation. Results: The maximum voltage output of 118.93, 144.84, and 89.76 mV were produced keeping the resistance unlimited for MFC1 (urine substrate), MFC2 (blackwater substrate), and MFC3 (graywater substrate), respectively. MFC that utilized graywater as a substrate brought the tiniest quantity of electricity; however, it stood the most stable. The highest COD reduction (65.83%) in the process was reported in urine substrate and the highest BOD5 removal (69.18%) was reported in black water substrate. Conclusion: The experimental results provided a promising indication of MFCs viability, providing hope for future power generation and alternative wastewater treatment option in developing countries.\",\"PeriodicalId\":51877,\"journal\":{\"name\":\"Environmental Health Engineering and Management Journal\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Health Engineering and Management Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34172/ehem.2023.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Health Engineering and Management Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/ehem.2023.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Development of microbial fuel cell for wastewater treatment and electricity generation using domestic wastes
Background: The energy crisis is a growing problem around the world, requiring the creation of alternative energy sources that can generate less carbon dioxide and benefit the ecosystem. Reutilization of wastewater is becoming the emerging energy solution. Wastewater contains a large amount of organic matter that can be oxidized in microbial fuel cells (MFCs) to produce electricity. MFCs use biodegradable materials to create energy in the presence of microorganisms. Methods: Purposive sampling technique was employed to collect samples from critical polluting sources. The samples were certainly maintained in a refrigerator at 4°C. Several mixes for sample were prepared and tested analytically- for physio-chemical and bacteriological characterizations of each substrate status at pre- and post-treatment stages. Electricity generating capacity of MFCs that employing different substrates was investigated experimentally using batch reactors. The cross-sectional methodology was employed to study possible power generation. Results: The maximum voltage output of 118.93, 144.84, and 89.76 mV were produced keeping the resistance unlimited for MFC1 (urine substrate), MFC2 (blackwater substrate), and MFC3 (graywater substrate), respectively. MFC that utilized graywater as a substrate brought the tiniest quantity of electricity; however, it stood the most stable. The highest COD reduction (65.83%) in the process was reported in urine substrate and the highest BOD5 removal (69.18%) was reported in black water substrate. Conclusion: The experimental results provided a promising indication of MFCs viability, providing hope for future power generation and alternative wastewater treatment option in developing countries.