数字生态环境下声乐生态的可持续发展

Pub Date : 2023-06-30 DOI:10.17993/3ctic.2023.122.324-340
Xueyi Liu
{"title":"数字生态环境下声乐生态的可持续发展","authors":"Xueyi Liu","doi":"10.17993/3ctic.2023.122.324-340","DOIUrl":null,"url":null,"abstract":"The phenomenon of noise interference during vocal transmission can lead to the problem of poor vocal transmission quality. This paper proposes a study on the sustainability of vocal ecology in a digital ecological environment. First, the matching tracking algorithm can extract the time-frequency characteristics of the effective signal, attenuate the interference of noise, and improve the propagation quality. A sustainable development GA-BP network model is established, and the adjustment amount of each weighting coefficient is obtained according to the gradient algorithm and using the inertia adjustment strategy. The coordination is regulated through feedback control strategies to ultimately achieve ecological sustainability of vocal music. The analysis results show that the average relative error of the simulation prediction of the sustainable development GA-BP network model is 3.54%, the maximum relative error is 8.11%, and the average relative error is within 5% of 70%. It has significant superiority and high efficiency in comparison with the prediction degree of the traditional model.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable development of vocal music ecology in a digital ecological environment\",\"authors\":\"Xueyi Liu\",\"doi\":\"10.17993/3ctic.2023.122.324-340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The phenomenon of noise interference during vocal transmission can lead to the problem of poor vocal transmission quality. This paper proposes a study on the sustainability of vocal ecology in a digital ecological environment. First, the matching tracking algorithm can extract the time-frequency characteristics of the effective signal, attenuate the interference of noise, and improve the propagation quality. A sustainable development GA-BP network model is established, and the adjustment amount of each weighting coefficient is obtained according to the gradient algorithm and using the inertia adjustment strategy. The coordination is regulated through feedback control strategies to ultimately achieve ecological sustainability of vocal music. The analysis results show that the average relative error of the simulation prediction of the sustainable development GA-BP network model is 3.54%, the maximum relative error is 8.11%, and the average relative error is within 5% of 70%. It has significant superiority and high efficiency in comparison with the prediction degree of the traditional model.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17993/3ctic.2023.122.324-340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17993/3ctic.2023.122.324-340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

声音传输过程中的噪声干扰现象会导致声音传输质量差的问题。本文提出了数字生态环境下声乐生态可持续性的研究。首先,匹配跟踪算法可以提取有效信号的时频特性,衰减噪声的干扰,提高传播质量;建立可持续发展GA-BP网络模型,根据梯度算法,采用惯性调整策略,得到各权重系数的调整量。通过反馈控制策略调节这种协调,最终实现声乐的生态可持续性。分析结果表明,可持续发展GA-BP网络模型模拟预测的平均相对误差为3.54%,最大相对误差为8.11%,平均相对误差在70%的5%以内。与传统模型的预测程度相比,具有显著的优越性和高效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Sustainable development of vocal music ecology in a digital ecological environment
The phenomenon of noise interference during vocal transmission can lead to the problem of poor vocal transmission quality. This paper proposes a study on the sustainability of vocal ecology in a digital ecological environment. First, the matching tracking algorithm can extract the time-frequency characteristics of the effective signal, attenuate the interference of noise, and improve the propagation quality. A sustainable development GA-BP network model is established, and the adjustment amount of each weighting coefficient is obtained according to the gradient algorithm and using the inertia adjustment strategy. The coordination is regulated through feedback control strategies to ultimately achieve ecological sustainability of vocal music. The analysis results show that the average relative error of the simulation prediction of the sustainable development GA-BP network model is 3.54%, the maximum relative error is 8.11%, and the average relative error is within 5% of 70%. It has significant superiority and high efficiency in comparison with the prediction degree of the traditional model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1