{"title":"量子引力本体论","authors":"Edwin Eugene Klingman","doi":"10.4236/jmp.2023.1411080","DOIUrl":null,"url":null,"abstract":"A theory of Quantum Gravity based on Primordial Field Theory is applied to a fundamental particle, the neutron. The result is compared to the current quantum description of the neutron bouncing in a gravitational field. Our quantum gravity theory yields results in agreement with the Q-bounce experimental data, but ontologically different from quantum mechanics. The differences are summarized and imply that this experiment on a fundamental particle has the potential to radically alter the ontology of field theory.","PeriodicalId":16352,"journal":{"name":"Journal of Modern Physics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ontology of Quantum Gravity\",\"authors\":\"Edwin Eugene Klingman\",\"doi\":\"10.4236/jmp.2023.1411080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A theory of Quantum Gravity based on Primordial Field Theory is applied to a fundamental particle, the neutron. The result is compared to the current quantum description of the neutron bouncing in a gravitational field. Our quantum gravity theory yields results in agreement with the Q-bounce experimental data, but ontologically different from quantum mechanics. The differences are summarized and imply that this experiment on a fundamental particle has the potential to radically alter the ontology of field theory.\",\"PeriodicalId\":16352,\"journal\":{\"name\":\"Journal of Modern Physics\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/jmp.2023.1411080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jmp.2023.1411080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A theory of Quantum Gravity based on Primordial Field Theory is applied to a fundamental particle, the neutron. The result is compared to the current quantum description of the neutron bouncing in a gravitational field. Our quantum gravity theory yields results in agreement with the Q-bounce experimental data, but ontologically different from quantum mechanics. The differences are summarized and imply that this experiment on a fundamental particle has the potential to radically alter the ontology of field theory.