尾连词的双样本检验及其在股票指数中的应用

IF 2.9 2区 数学 Q1 ECONOMICS Journal of Business & Economic Statistics Pub Date : 2023-02-06 DOI:10.1080/07350015.2023.2166050
S.U. Can, John Einmahl, Roger Laeven
{"title":"尾连词的双样本检验及其在股票指数中的应用","authors":"S.U. Can, John Einmahl, Roger Laeven","doi":"10.1080/07350015.2023.2166050","DOIUrl":null,"url":null,"abstract":"A novel, general two-sample hypothesis testing procedure is established for testing the equality of tail copulas associated with bivariate data. More precisely, using a martingale transformation of a natural two-sample tail copula process, a test process is constructed, which is shown to converge in distribution to a standard Wiener process. Hence, from this test process a myriad of asymptotically distribution-free two-sample tests can be obtained. The good finite-sample behavior of our procedure is demonstrated through Monte Carlo simulations. Using the new testing procedure, no evidence of a difference in the respective tail copulas is found for pairs of negative daily log-returns of equity indices during and after the global financial crisis.","PeriodicalId":50247,"journal":{"name":"Journal of Business & Economic Statistics","volume":"85 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Sample Testing for Tail Copulas with an Application to Equity Indices\",\"authors\":\"S.U. Can, John Einmahl, Roger Laeven\",\"doi\":\"10.1080/07350015.2023.2166050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel, general two-sample hypothesis testing procedure is established for testing the equality of tail copulas associated with bivariate data. More precisely, using a martingale transformation of a natural two-sample tail copula process, a test process is constructed, which is shown to converge in distribution to a standard Wiener process. Hence, from this test process a myriad of asymptotically distribution-free two-sample tests can be obtained. The good finite-sample behavior of our procedure is demonstrated through Monte Carlo simulations. Using the new testing procedure, no evidence of a difference in the respective tail copulas is found for pairs of negative daily log-returns of equity indices during and after the global financial crisis.\",\"PeriodicalId\":50247,\"journal\":{\"name\":\"Journal of Business & Economic Statistics\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Business & Economic Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07350015.2023.2166050\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business & Economic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07350015.2023.2166050","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

建立了一种新的、通用的双样本假设检验程序,用于检验与二元数据相关的尾联的等式。更精确地说,利用自然双样本尾联过程的鞅变换,构造了一个测试过程,该过程在分布上收敛于标准的Wiener过程。因此,从这个检验过程中可以得到无数个渐近无分布的双样本检验。通过蒙特卡罗模拟证明了我们的程序具有良好的有限样本性能。使用新的测试程序,在全球金融危机期间和之后,没有证据表明股票指数的负日对数回报对各自的尾尾关系存在差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Two-Sample Testing for Tail Copulas with an Application to Equity Indices
A novel, general two-sample hypothesis testing procedure is established for testing the equality of tail copulas associated with bivariate data. More precisely, using a martingale transformation of a natural two-sample tail copula process, a test process is constructed, which is shown to converge in distribution to a standard Wiener process. Hence, from this test process a myriad of asymptotically distribution-free two-sample tests can be obtained. The good finite-sample behavior of our procedure is demonstrated through Monte Carlo simulations. Using the new testing procedure, no evidence of a difference in the respective tail copulas is found for pairs of negative daily log-returns of equity indices during and after the global financial crisis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Business & Economic Statistics
Journal of Business & Economic Statistics 数学-统计学与概率论
CiteScore
5.00
自引率
6.70%
发文量
98
审稿时长
>12 weeks
期刊介绍: The Journal of Business and Economic Statistics (JBES) publishes a range of articles, primarily applied statistical analyses of microeconomic, macroeconomic, forecasting, business, and finance related topics. More general papers in statistics, econometrics, computation, simulation, or graphics are also appropriate if they are immediately applicable to the journal''s general topics of interest. Articles published in JBES contain significant results, high-quality methodological content, excellent exposition, and usually include a substantive empirical application.
期刊最新文献
A Ridge-Regularized Jackknifed Anderson-Rubin Test. Efficient and Robust Estimation of the Generalized LATE Model Modeling and Forecasting Macroeconomic Downside Risk* Causal inference under outcome-based sampling with monotonicity assumptions Functional-Coefficient Quantile Regression for Panel Data with Latent Group Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1