设计工业搬运机器人运动轨迹的非线性控制系统

Haoming Zhao, Xinling Zhang
{"title":"设计工业搬运机器人运动轨迹的非线性控制系统","authors":"Haoming Zhao,&nbsp;Xinling Zhang","doi":"10.1002/adc2.165","DOIUrl":null,"url":null,"abstract":"<p>Industrial robot is a and multi-output complex system with strong coupling and high nonlinearity. The motion control accuracy of the system is affected by many factors. To solve the difficulty in establishing the input and output characteristics of robot dynamics modeling, the robot motion model is established through the Lagrangian energy function. At the same time, the nonlinear relationship between angular velocity, angular acceleration, and robot torque is accurately expressed through improved cascaded neural network. In addition, the optimal time planning of the robot's trajectory in joint space is studied using multinomial interpolation method and the particle swarm optimization (PSO). In the simulation experiment, the effect of the proposed dynamic model fitting was outstanding. Under the mixed multinomial difference calculation planning, the angular position trajectories of the three joints changed very smoothly. In the data set application test, the average error of the PSO algorithm was 0.4061 mm and the average task time was 9.101 s, which were lower than other planning algorithms. Experiments showed that the Lagrangian dynamic model analysis based on genetic algorithm cascaded neural network and PSO trajectory scheduling method under mixed multinomial difference had better trajectory planning performance in handling tasks.</p>","PeriodicalId":100030,"journal":{"name":"Advanced Control for Applications","volume":"6 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.165","citationCount":"0","resultStr":"{\"title\":\"Design of nonlinear control system for motion trajectory of industrial handling robot\",\"authors\":\"Haoming Zhao,&nbsp;Xinling Zhang\",\"doi\":\"10.1002/adc2.165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Industrial robot is a and multi-output complex system with strong coupling and high nonlinearity. The motion control accuracy of the system is affected by many factors. To solve the difficulty in establishing the input and output characteristics of robot dynamics modeling, the robot motion model is established through the Lagrangian energy function. At the same time, the nonlinear relationship between angular velocity, angular acceleration, and robot torque is accurately expressed through improved cascaded neural network. In addition, the optimal time planning of the robot's trajectory in joint space is studied using multinomial interpolation method and the particle swarm optimization (PSO). In the simulation experiment, the effect of the proposed dynamic model fitting was outstanding. Under the mixed multinomial difference calculation planning, the angular position trajectories of the three joints changed very smoothly. In the data set application test, the average error of the PSO algorithm was 0.4061 mm and the average task time was 9.101 s, which were lower than other planning algorithms. Experiments showed that the Lagrangian dynamic model analysis based on genetic algorithm cascaded neural network and PSO trajectory scheduling method under mixed multinomial difference had better trajectory planning performance in handling tasks.</p>\",\"PeriodicalId\":100030,\"journal\":{\"name\":\"Advanced Control for Applications\",\"volume\":\"6 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.165\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Control for Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adc2.165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Control for Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adc2.165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

工业机器人是一个多输出的复杂系统,具有强耦合性和高度非线性。系统的运动控制精度受多种因素影响。为解决机器人动力学建模中输入输出特性难以确定的问题,通过拉格朗日能量函数建立机器人运动模型。同时,通过改进的级联神经网络精确表达了角速度、角加速度和机器人转矩之间的非线性关系。此外,还利用多叉插值法和粒子群优化(PSO)研究了机器人在关节空间中轨迹的最优时间规划。在仿真实验中,所提出的动态模型拟合效果显著。在混合多项式差分计算规划下,三个关节的角位置轨迹变化非常平滑。在数据集应用测试中,PSO 算法的平均误差为 0.4061 mm,平均任务时间为 9.101 s,均低于其他规划算法。实验表明,基于遗传算法级联神经网络的拉格朗日动态模型分析和混合多项式差分下的 PSO 轨迹调度方法在搬运任务中具有更好的轨迹规划性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of nonlinear control system for motion trajectory of industrial handling robot

Industrial robot is a and multi-output complex system with strong coupling and high nonlinearity. The motion control accuracy of the system is affected by many factors. To solve the difficulty in establishing the input and output characteristics of robot dynamics modeling, the robot motion model is established through the Lagrangian energy function. At the same time, the nonlinear relationship between angular velocity, angular acceleration, and robot torque is accurately expressed through improved cascaded neural network. In addition, the optimal time planning of the robot's trajectory in joint space is studied using multinomial interpolation method and the particle swarm optimization (PSO). In the simulation experiment, the effect of the proposed dynamic model fitting was outstanding. Under the mixed multinomial difference calculation planning, the angular position trajectories of the three joints changed very smoothly. In the data set application test, the average error of the PSO algorithm was 0.4061 mm and the average task time was 9.101 s, which were lower than other planning algorithms. Experiments showed that the Lagrangian dynamic model analysis based on genetic algorithm cascaded neural network and PSO trajectory scheduling method under mixed multinomial difference had better trajectory planning performance in handling tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Efficient parameter estimation for second order plus dead time systems in process plant control Optimal installation of DG in radial distribution network using arithmetic optimization algorithm To cascade feedback loops, or not? A novel modulation for four-switch Buck-boost converter to eliminate the right half plane zero point
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1