利用地球遥感数据监测越南今土省森林基金土地

Q4 Earth and Planetary Sciences Geodeziya i Kartografiya Pub Date : 2023-09-20 DOI:10.22389/0016-7126-2023-998-8-57-64
V.F. Kovyazin, T.A. Nguyen, T.T. Nguyen
{"title":"利用地球遥感数据监测越南今土省森林基金土地","authors":"V.F. Kovyazin, T.A. Nguyen, T.T. Nguyen","doi":"10.22389/0016-7126-2023-998-8-57-64","DOIUrl":null,"url":null,"abstract":"In recent years, cloud computing technology has become increasingly useful and practical in many fields, including forestry. Monitoring forest dynamics throughout a relatively large area requires collecting a large amount of input data, and processing it is very complex and time-consuming. In this study, we demonstrated the potential of applying cloud computing technology in the Google Earth Engine platform, in conjunction with remote sensing data to monitor forest land changes in Kon Tum province, Vietnam. The use of the javascript editor on Google Earth Engine (GEE) automated the process of collecting and processing remote sensing data to meet the specified criteria, while saving time, effort, and computer resources. Computing the normalized difference vegetation index and classifying land cover types using the Random Forest machine learning method on the GEE platform also showed accuracy in representing the distribution of vegetation cover and evaluating the status and changes in forest areas in Kon Tum province. The study showed that the policies of Kon Tum province administration in recent years have had a positive impact on restoring natural forest areas and reducing resource losses. So, the application of remote sensing data on the cloud computing platform of Google Earth Engine is a promising method for conserving and managing forest resources in Kon Tum province and throughout Vietnam","PeriodicalId":35691,"journal":{"name":"Geodeziya i Kartografiya","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring the forest fund lands of Kon Tum province, Vietnam using remote sensing data of Earth\",\"authors\":\"V.F. Kovyazin, T.A. Nguyen, T.T. Nguyen\",\"doi\":\"10.22389/0016-7126-2023-998-8-57-64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, cloud computing technology has become increasingly useful and practical in many fields, including forestry. Monitoring forest dynamics throughout a relatively large area requires collecting a large amount of input data, and processing it is very complex and time-consuming. In this study, we demonstrated the potential of applying cloud computing technology in the Google Earth Engine platform, in conjunction with remote sensing data to monitor forest land changes in Kon Tum province, Vietnam. The use of the javascript editor on Google Earth Engine (GEE) automated the process of collecting and processing remote sensing data to meet the specified criteria, while saving time, effort, and computer resources. Computing the normalized difference vegetation index and classifying land cover types using the Random Forest machine learning method on the GEE platform also showed accuracy in representing the distribution of vegetation cover and evaluating the status and changes in forest areas in Kon Tum province. The study showed that the policies of Kon Tum province administration in recent years have had a positive impact on restoring natural forest areas and reducing resource losses. So, the application of remote sensing data on the cloud computing platform of Google Earth Engine is a promising method for conserving and managing forest resources in Kon Tum province and throughout Vietnam\",\"PeriodicalId\":35691,\"journal\":{\"name\":\"Geodeziya i Kartografiya\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geodeziya i Kartografiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22389/0016-7126-2023-998-8-57-64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodeziya i Kartografiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22389/0016-7126-2023-998-8-57-64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

近年来,云计算技术在包括林业在内的许多领域变得越来越有用和实用。监测面积较大的森林动态需要收集大量的输入数据,处理这些数据非常复杂和耗时。在这项研究中,我们展示了将云计算技术应用于谷歌地球引擎平台的潜力,并结合遥感数据监测越南今土省的林地变化。在Google Earth Engine (GEE)上使用javascript编辑器可以自动收集和处理遥感数据,以满足指定的标准,同时节省时间、精力和计算机资源。在GEE平台上,使用随机森林机器学习方法计算归一化植被指数并对土地覆盖类型进行分类,在表示坤土省植被覆盖分布和评估森林区域状况和变化方面也显示出准确性。研究表明,今土省政府近年来的政策对恢复天然林面积和减少资源损失产生了积极影响。因此,遥感数据在Google Earth Engine云计算平台上的应用,是今土省乃至整个越南森林资源保护和管理的一种很有前景的方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monitoring the forest fund lands of Kon Tum province, Vietnam using remote sensing data of Earth
In recent years, cloud computing technology has become increasingly useful and practical in many fields, including forestry. Monitoring forest dynamics throughout a relatively large area requires collecting a large amount of input data, and processing it is very complex and time-consuming. In this study, we demonstrated the potential of applying cloud computing technology in the Google Earth Engine platform, in conjunction with remote sensing data to monitor forest land changes in Kon Tum province, Vietnam. The use of the javascript editor on Google Earth Engine (GEE) automated the process of collecting and processing remote sensing data to meet the specified criteria, while saving time, effort, and computer resources. Computing the normalized difference vegetation index and classifying land cover types using the Random Forest machine learning method on the GEE platform also showed accuracy in representing the distribution of vegetation cover and evaluating the status and changes in forest areas in Kon Tum province. The study showed that the policies of Kon Tum province administration in recent years have had a positive impact on restoring natural forest areas and reducing resource losses. So, the application of remote sensing data on the cloud computing platform of Google Earth Engine is a promising method for conserving and managing forest resources in Kon Tum province and throughout Vietnam
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geodeziya i Kartografiya
Geodeziya i Kartografiya Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
0.60
自引率
0.00%
发文量
73
期刊最新文献
Research on GNSS positioning and applications in Poland in 2015–2018 Geoinformation analysis of the united territorial communities land use On the reduction of geodetic and gravimetric measurements on technogenic and geodynamic polygons The recommendations for territorial development of land use in the region Site selection for solar power plant in Zaporizhia city (Ukraine)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1