用神经对路网络(CNN)对汽车轮胎损伤进行模型检查

{"title":"用神经对路网络(CNN)对汽车轮胎损伤进行模型检查","authors":"","doi":"10.30596/rmme.v6i2.16198","DOIUrl":null,"url":null,"abstract":"Tire damage inspection can be categorized as part of vehicle maintenance with the aim of ensuring that the tire condition is in good condition. Visual inspection using human observation has limitations, making it not always accurate and can result in errors in determining tire suitability. This research designs a machine learning modeling using Convolutional Neural Network (CNN) to detect damage to mobile tires. The parameters used in the CNN model training are the Adam optimizer, learning rate 0.0001, batch size 16, and using the Early Stopping function. In this study, the CNN modeling was tested with two treatments, namely using a dataset without data augmentation and a dataset using data augmentation, then the results were evaluated using a confusion matrix. The results showed that data augmentation treatment can significantly improve model performance, with an increase in accuracy of 20%, precision of 14%, recall of 22%, and f1-score of 19% compared to treatment without data augmentation","PeriodicalId":53345,"journal":{"name":"Jurnal Energi Dan Manufaktur","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pemodelan Inspeksi Kerusakan Ban Mobil Menggunakan Convolutional Neural Network (CNN)\",\"authors\":\"\",\"doi\":\"10.30596/rmme.v6i2.16198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tire damage inspection can be categorized as part of vehicle maintenance with the aim of ensuring that the tire condition is in good condition. Visual inspection using human observation has limitations, making it not always accurate and can result in errors in determining tire suitability. This research designs a machine learning modeling using Convolutional Neural Network (CNN) to detect damage to mobile tires. The parameters used in the CNN model training are the Adam optimizer, learning rate 0.0001, batch size 16, and using the Early Stopping function. In this study, the CNN modeling was tested with two treatments, namely using a dataset without data augmentation and a dataset using data augmentation, then the results were evaluated using a confusion matrix. The results showed that data augmentation treatment can significantly improve model performance, with an increase in accuracy of 20%, precision of 14%, recall of 22%, and f1-score of 19% compared to treatment without data augmentation\",\"PeriodicalId\":53345,\"journal\":{\"name\":\"Jurnal Energi Dan Manufaktur\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Energi Dan Manufaktur\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30596/rmme.v6i2.16198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Energi Dan Manufaktur","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30596/rmme.v6i2.16198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

轮胎损伤检查可以归类为车辆维护的一部分,目的是确保轮胎状况良好。使用人工观察的目视检查具有局限性,使其不总是准确的,并且可能导致确定轮胎适用性的错误。本研究设计了一种使用卷积神经网络(CNN)的机器学习模型来检测移动轮胎的损伤。CNN模型训练中使用的参数是Adam优化器,学习率为0.0001,批处理大小为16,并使用Early stop函数。在本研究中,对CNN模型进行了两种处理,即不加数据增强的数据集和加数据增强的数据集,然后使用混淆矩阵对结果进行评估。结果表明,与未进行数据增强处理相比,数据增强处理可显著提高模型性能,准确率提高20%,精密度提高14%,召回率提高22%,f1得分提高19%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pemodelan Inspeksi Kerusakan Ban Mobil Menggunakan Convolutional Neural Network (CNN)
Tire damage inspection can be categorized as part of vehicle maintenance with the aim of ensuring that the tire condition is in good condition. Visual inspection using human observation has limitations, making it not always accurate and can result in errors in determining tire suitability. This research designs a machine learning modeling using Convolutional Neural Network (CNN) to detect damage to mobile tires. The parameters used in the CNN model training are the Adam optimizer, learning rate 0.0001, batch size 16, and using the Early Stopping function. In this study, the CNN modeling was tested with two treatments, namely using a dataset without data augmentation and a dataset using data augmentation, then the results were evaluated using a confusion matrix. The results showed that data augmentation treatment can significantly improve model performance, with an increase in accuracy of 20%, precision of 14%, recall of 22%, and f1-score of 19% compared to treatment without data augmentation
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
13
审稿时长
24 weeks
期刊最新文献
Penggunaan Las Gesek (Friction Welding) Guna Penyambungan Dua Buah Logam Baja Karbon ST 42 pada Pengujian Tarik dan Struktur Mikro untuk Spring Pin pada Mobil STUDI EKSPERIMENTAL NATURAL REFIGERANT DENGAN VARIASI DIAMETER TiT-HEAT EXCHANGER TERHADAP REFRIGERATOR PERFORMANCE Sintesis kapsul mikro poli (urea-formaldehid) berisi minyak biji rami sebagai self-healing coating dengan variasi kecepatan agitasi Analisis Pengaruh Waktu Etsa Terhadap Ukuran Struktur Mikrografi Material Logam dan Paduannya Analisis Audit Energi di Gedung Teknik Elektro Universitas Diponegoro
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1