mc1r抑制黑色素细胞的单细胞分析。

IF 3.9 3区 医学 Q2 CELL BIOLOGY Pigment Cell & Melanoma Research Pub Date : 2023-11-16 DOI:10.1111/pcmr.13141
H. Matthew Berns, Dawn E. Watkins-Chow, Sizhu Lu, Pakavarin Louphrasitthiphol, Tongwu Zhang, Kevin M. Brown, Pedro Moura-Alves, Colin R. Goding, William J. Pavan
{"title":"mc1r抑制黑色素细胞的单细胞分析。","authors":"H. Matthew Berns,&nbsp;Dawn E. Watkins-Chow,&nbsp;Sizhu Lu,&nbsp;Pakavarin Louphrasitthiphol,&nbsp;Tongwu Zhang,&nbsp;Kevin M. Brown,&nbsp;Pedro Moura-Alves,&nbsp;Colin R. Goding,&nbsp;William J. Pavan","doi":"10.1111/pcmr.13141","DOIUrl":null,"url":null,"abstract":"<p>The human red hair color (RHC) trait is caused by increased pheomelanin (red-yellow) and reduced eumelanin (black-brown) pigment in skin and hair due to diminished melanocortin 1 receptor (MC1R) function. In addition, individuals harboring the RHC trait are predisposed to melanoma development. While <i>MC1R</i> variants have been established as causative of RHC and are a well-defined risk factor for melanoma, it remains unclear mechanistically why decreased MC1R signaling alters pigmentation and increases melanoma susceptibility. Here, we use single-cell RNA sequencing (scRNA-seq) of melanocytes isolated from RHC mouse models to define a MC1R-inhibited Gene Signature (MiGS) comprising a large set of previously unidentified genes which may be implicated in melanogenesis and oncogenic transformation. We show that one of the candidate MiGS genes, TBX3, a well-known anti-senescence transcription factor implicated in melanoma progression, binds both E-box and T-box elements to regulate genes associated with melanogenesis and senescence bypass. Our results provide key insights into further mechanisms by which melanocytes with reduced MC1R signaling may regulate pigmentation and offer new candidates of study toward understanding how individuals with the RHC phenotype are predisposed to melanoma.</p>","PeriodicalId":219,"journal":{"name":"Pigment Cell & Melanoma Research","volume":"37 2","pages":"291-308"},"PeriodicalIF":3.9000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/pcmr.13141","citationCount":"0","resultStr":"{\"title\":\"Single-cell profiling of MC1R-inhibited melanocytes\",\"authors\":\"H. Matthew Berns,&nbsp;Dawn E. Watkins-Chow,&nbsp;Sizhu Lu,&nbsp;Pakavarin Louphrasitthiphol,&nbsp;Tongwu Zhang,&nbsp;Kevin M. Brown,&nbsp;Pedro Moura-Alves,&nbsp;Colin R. Goding,&nbsp;William J. Pavan\",\"doi\":\"10.1111/pcmr.13141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The human red hair color (RHC) trait is caused by increased pheomelanin (red-yellow) and reduced eumelanin (black-brown) pigment in skin and hair due to diminished melanocortin 1 receptor (MC1R) function. In addition, individuals harboring the RHC trait are predisposed to melanoma development. While <i>MC1R</i> variants have been established as causative of RHC and are a well-defined risk factor for melanoma, it remains unclear mechanistically why decreased MC1R signaling alters pigmentation and increases melanoma susceptibility. Here, we use single-cell RNA sequencing (scRNA-seq) of melanocytes isolated from RHC mouse models to define a MC1R-inhibited Gene Signature (MiGS) comprising a large set of previously unidentified genes which may be implicated in melanogenesis and oncogenic transformation. We show that one of the candidate MiGS genes, TBX3, a well-known anti-senescence transcription factor implicated in melanoma progression, binds both E-box and T-box elements to regulate genes associated with melanogenesis and senescence bypass. Our results provide key insights into further mechanisms by which melanocytes with reduced MC1R signaling may regulate pigmentation and offer new candidates of study toward understanding how individuals with the RHC phenotype are predisposed to melanoma.</p>\",\"PeriodicalId\":219,\"journal\":{\"name\":\"Pigment Cell & Melanoma Research\",\"volume\":\"37 2\",\"pages\":\"291-308\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/pcmr.13141\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pigment Cell & Melanoma Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/pcmr.13141\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pigment Cell & Melanoma Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/pcmr.13141","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人类的红发色(RHC)特征是由于黑色素皮质素1受体(MC1R)功能减弱,皮肤和头发中的泛黑素(红黄色)增加,真黑素(黑棕色)减少造成的。此外,具有RHC特征的个体易患黑色素瘤。虽然MC1R变异已被确定为RHC的病因,并且是黑色素瘤的明确危险因素,但仍不清楚MC1R信号减少改变色素沉着并增加黑色素瘤易感性的机制。在这里,我们使用从RHC小鼠模型中分离的黑素细胞的单细胞RNA测序(scRNA-seq)来定义mc1r抑制基因签名(MiGS),其中包含大量先前未识别的基因,这些基因可能与黑素形成和致癌转化有关。我们发现候选MiGS基因之一TBX3是一种众所周知的与黑色素瘤进展有关的抗衰老转录因子,它结合E-box和T-box元件来调节与黑色素形成和衰老绕道相关的基因。我们的研究结果为进一步了解MC1R信号减少的黑素细胞可能调节色素沉着的机制提供了关键见解,并为理解具有RHC表型的个体如何易患黑色素瘤提供了新的研究候选人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Single-cell profiling of MC1R-inhibited melanocytes

The human red hair color (RHC) trait is caused by increased pheomelanin (red-yellow) and reduced eumelanin (black-brown) pigment in skin and hair due to diminished melanocortin 1 receptor (MC1R) function. In addition, individuals harboring the RHC trait are predisposed to melanoma development. While MC1R variants have been established as causative of RHC and are a well-defined risk factor for melanoma, it remains unclear mechanistically why decreased MC1R signaling alters pigmentation and increases melanoma susceptibility. Here, we use single-cell RNA sequencing (scRNA-seq) of melanocytes isolated from RHC mouse models to define a MC1R-inhibited Gene Signature (MiGS) comprising a large set of previously unidentified genes which may be implicated in melanogenesis and oncogenic transformation. We show that one of the candidate MiGS genes, TBX3, a well-known anti-senescence transcription factor implicated in melanoma progression, binds both E-box and T-box elements to regulate genes associated with melanogenesis and senescence bypass. Our results provide key insights into further mechanisms by which melanocytes with reduced MC1R signaling may regulate pigmentation and offer new candidates of study toward understanding how individuals with the RHC phenotype are predisposed to melanoma.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pigment Cell & Melanoma Research
Pigment Cell & Melanoma Research 医学-皮肤病学
CiteScore
8.90
自引率
2.30%
发文量
54
审稿时长
6-12 weeks
期刊介绍: Pigment Cell & Melanoma Researchpublishes manuscripts on all aspects of pigment cells including development, cell and molecular biology, genetics, diseases of pigment cells including melanoma. Papers that provide insights into the causes and progression of melanoma including the process of metastasis and invasion, proliferation, senescence, apoptosis or gene regulation are especially welcome, as are papers that use the melanocyte system to answer questions of general biological relevance. Papers that are purely descriptive or make only minor advances to our knowledge of pigment cells or melanoma in particular are not suitable for this journal. Keywords Pigment Cell & Melanoma Research, cell biology, melatonin, biochemistry, chemistry, comparative biology, dermatology, developmental biology, genetics, hormones, intracellular signalling, melanoma, molecular biology, ocular and extracutaneous melanin, pharmacology, photobiology, physics, pigmentary disorders
期刊最新文献
The Lipid Droplet Protein DHRS3 Is a Regulator of Melanoma Cell State. UVA Irradiation Promotes Melanoma Cell Proliferation Mediated by OPN3 Independently of ROS Production. Issue Information Bay 11-7082, an NF-κB Inhibitor, Prevents Post-Inflammatory Hyperpigmentation Through Inhibition of Inflammation and Melanogenesis. Low-Dose Baricitinib Plus Narrow-Band Ultraviolet B for the Treatment of Progressive Non-Segmental Vitiligo: A Prospective, Controlled, Open-Label Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1