Raquel R Soares-Santos, Daniel P Machado, Thiago L Romero, Igor D G Duarte
{"title":"在大鼠爪压戒断模型中,一氧化氮和钾通道介导曲马多诱导的外周抗痛觉,而非阿片和大麻素受体介导。","authors":"Raquel R Soares-Santos, Daniel P Machado, Thiago L Romero, Igor D G Duarte","doi":"10.1139/cjpp-2023-0314","DOIUrl":null,"url":null,"abstract":"<p><p>Tramadol, an analgesic classified as an \"atypical opioid\", exhibits both opioid and non-opioid mechanisms of action. This study aimed to explore these mechanisms, specifically the opioid-, cannabinoid-, nitric oxide-, and potassium channel-based mechanisms, which contribute to the peripheral antinociception effect of tramadol, in an experimental rat model. The nociceptive threshold was determined using paw pressure withdrawal. To examine the mechanisms of action, several substances were administered intraplantarly: naloxone, a non-selective opioid antagonist (50 µg/paw); AM251 (80 µg/paw) and AM630 (100 µg/paw) as the selective antagonists for types 1 and 2 cannabinoid receptors, respectively; nitric oxide synthase inhibitors L-NOArg, L-NIO, L-NPA, and L-NIL (24 µg/paw); and the enzyme inhibitors of guanylatocyclase and phosphodiesterase of cGMP, ODQ, and zaprinast. Additionally, potassium channel blockers glibenclamide, tetraethylammonium, dequalinium, and paxillin were used. The results showed that opioid and cannabinoid receptor antagonists did not reverse tramadol's effects. L-NOarg, L-NIO, and L-NPA partially reversed antinociception, while ODQ completely reversed, and zaprinast enhanced tramadol's antinociception effect. Notably, glibenclamide blocked tramadol's antinociception in a dose-dependent manner. These findings suggest that tramadol's peripheral antinociception effect is likely mediated by the nitrergic pathway and sensitive ATP potassium channels, rather than the opioid and cannabinoid pathways.</p>","PeriodicalId":9520,"journal":{"name":"Canadian journal of physiology and pharmacology","volume":" ","pages":"218-227"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitric oxide and potassium channels but not opioid and cannabinoid receptors mediate tramadol-induced peripheral antinociception in rat model of paw pressure withdrawal.\",\"authors\":\"Raquel R Soares-Santos, Daniel P Machado, Thiago L Romero, Igor D G Duarte\",\"doi\":\"10.1139/cjpp-2023-0314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tramadol, an analgesic classified as an \\\"atypical opioid\\\", exhibits both opioid and non-opioid mechanisms of action. This study aimed to explore these mechanisms, specifically the opioid-, cannabinoid-, nitric oxide-, and potassium channel-based mechanisms, which contribute to the peripheral antinociception effect of tramadol, in an experimental rat model. The nociceptive threshold was determined using paw pressure withdrawal. To examine the mechanisms of action, several substances were administered intraplantarly: naloxone, a non-selective opioid antagonist (50 µg/paw); AM251 (80 µg/paw) and AM630 (100 µg/paw) as the selective antagonists for types 1 and 2 cannabinoid receptors, respectively; nitric oxide synthase inhibitors L-NOArg, L-NIO, L-NPA, and L-NIL (24 µg/paw); and the enzyme inhibitors of guanylatocyclase and phosphodiesterase of cGMP, ODQ, and zaprinast. Additionally, potassium channel blockers glibenclamide, tetraethylammonium, dequalinium, and paxillin were used. The results showed that opioid and cannabinoid receptor antagonists did not reverse tramadol's effects. L-NOarg, L-NIO, and L-NPA partially reversed antinociception, while ODQ completely reversed, and zaprinast enhanced tramadol's antinociception effect. Notably, glibenclamide blocked tramadol's antinociception in a dose-dependent manner. These findings suggest that tramadol's peripheral antinociception effect is likely mediated by the nitrergic pathway and sensitive ATP potassium channels, rather than the opioid and cannabinoid pathways.</p>\",\"PeriodicalId\":9520,\"journal\":{\"name\":\"Canadian journal of physiology and pharmacology\",\"volume\":\" \",\"pages\":\"218-227\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian journal of physiology and pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1139/cjpp-2023-0314\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of physiology and pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1139/cjpp-2023-0314","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Nitric oxide and potassium channels but not opioid and cannabinoid receptors mediate tramadol-induced peripheral antinociception in rat model of paw pressure withdrawal.
Tramadol, an analgesic classified as an "atypical opioid", exhibits both opioid and non-opioid mechanisms of action. This study aimed to explore these mechanisms, specifically the opioid-, cannabinoid-, nitric oxide-, and potassium channel-based mechanisms, which contribute to the peripheral antinociception effect of tramadol, in an experimental rat model. The nociceptive threshold was determined using paw pressure withdrawal. To examine the mechanisms of action, several substances were administered intraplantarly: naloxone, a non-selective opioid antagonist (50 µg/paw); AM251 (80 µg/paw) and AM630 (100 µg/paw) as the selective antagonists for types 1 and 2 cannabinoid receptors, respectively; nitric oxide synthase inhibitors L-NOArg, L-NIO, L-NPA, and L-NIL (24 µg/paw); and the enzyme inhibitors of guanylatocyclase and phosphodiesterase of cGMP, ODQ, and zaprinast. Additionally, potassium channel blockers glibenclamide, tetraethylammonium, dequalinium, and paxillin were used. The results showed that opioid and cannabinoid receptor antagonists did not reverse tramadol's effects. L-NOarg, L-NIO, and L-NPA partially reversed antinociception, while ODQ completely reversed, and zaprinast enhanced tramadol's antinociception effect. Notably, glibenclamide blocked tramadol's antinociception in a dose-dependent manner. These findings suggest that tramadol's peripheral antinociception effect is likely mediated by the nitrergic pathway and sensitive ATP potassium channels, rather than the opioid and cannabinoid pathways.
期刊介绍:
Published since 1929, the Canadian Journal of Physiology and Pharmacology is a monthly journal that reports current research in all aspects of physiology, nutrition, pharmacology, and toxicology, contributed by recognized experts and scientists. It publishes symposium reviews and award lectures and occasionally dedicates entire issues or portions of issues to subjects of special interest to its international readership. The journal periodically publishes a “Made In Canada” special section that features invited review articles from internationally recognized scientists who have received some of their training in Canada.