Simon Maier, Kathrin Nickel, Thomas Lange, Georg Oeltzschner, Michael Dacko, Dominique Endres, Kimon Runge, Anke Schumann, Katharina Domschke, Michalis Rousos, Ludger Tebartz van Elst
{"title":"与非自闭症对照相比,自闭症谱系障碍成人脑乳酸水平升高:磁共振波谱研究。","authors":"Simon Maier, Kathrin Nickel, Thomas Lange, Georg Oeltzschner, Michael Dacko, Dominique Endres, Kimon Runge, Anke Schumann, Katharina Domschke, Michalis Rousos, Ludger Tebartz van Elst","doi":"10.1186/s13229-023-00577-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Autism spectrum disorder (ASD) encompasses a heterogeneous group with varied phenotypes and etiologies. Identifying pathogenic subgroups could facilitate targeted treatments. One promising avenue is investigating energy metabolism, as mitochondrial dysfunction has been implicated in a subgroup of ASD. Lactate, an indicator of energy metabolic anomalies, may serve as a potential biomarker for this subgroup. This study aimed to examine cerebral lactate (Lac+) levels in high-functioning adults with ASD, hypothesizing elevated mean Lac+ concentrations in contrast to neurotypical controls (NTCs).</p><p><strong>Materials and methods: </strong>Magnetic resonance spectroscopy (MRS) was used to study cerebral Lac+ in 71 adults with ASD and NTC, focusing on the posterior cingulate cortex (PCC). After quality control, 64 ASD and 58 NTC participants remained. Lac+ levels two standard deviations above the mean of the control group were considered elevated.</p><p><strong>Results: </strong>Mean PCC Lac+ levels were significantly higher in the ASD group than in the NTC group (p = 0.028; Cohen's d = 0.404), and 9.4% of the ASD group had elevated levels as compared to 0% of the NTCs (p = 0.029). No significant correlation was found between blood serum lactate levels and MRS-derived Lac+ levels.</p><p><strong>Limitations: </strong>A cautious interpretation of our results is warranted due to a p value of 0.028. In addition, a higher than anticipated proportion of data sets had to be excluded due to poor spectral quality.</p><p><strong>Conclusion: </strong>This study confirms the presence of elevated cerebral Lac+ levels in a subgroup of adults with ASD, suggesting the potential of lactate as a biomarker for mitochondrial dysfunction in a subgroup of ASD. The lower-than-expected prevalence (20% was expected) and moderate increase require further investigation to elucidate the underlying mechanisms and relationships with mitochondrial function.</p>","PeriodicalId":18733,"journal":{"name":"Molecular Autism","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10655272/pdf/","citationCount":"0","resultStr":"{\"title\":\"Increased cerebral lactate levels in adults with autism spectrum disorders compared to non-autistic controls: a magnetic resonance spectroscopy study.\",\"authors\":\"Simon Maier, Kathrin Nickel, Thomas Lange, Georg Oeltzschner, Michael Dacko, Dominique Endres, Kimon Runge, Anke Schumann, Katharina Domschke, Michalis Rousos, Ludger Tebartz van Elst\",\"doi\":\"10.1186/s13229-023-00577-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Autism spectrum disorder (ASD) encompasses a heterogeneous group with varied phenotypes and etiologies. Identifying pathogenic subgroups could facilitate targeted treatments. One promising avenue is investigating energy metabolism, as mitochondrial dysfunction has been implicated in a subgroup of ASD. Lactate, an indicator of energy metabolic anomalies, may serve as a potential biomarker for this subgroup. This study aimed to examine cerebral lactate (Lac+) levels in high-functioning adults with ASD, hypothesizing elevated mean Lac+ concentrations in contrast to neurotypical controls (NTCs).</p><p><strong>Materials and methods: </strong>Magnetic resonance spectroscopy (MRS) was used to study cerebral Lac+ in 71 adults with ASD and NTC, focusing on the posterior cingulate cortex (PCC). After quality control, 64 ASD and 58 NTC participants remained. Lac+ levels two standard deviations above the mean of the control group were considered elevated.</p><p><strong>Results: </strong>Mean PCC Lac+ levels were significantly higher in the ASD group than in the NTC group (p = 0.028; Cohen's d = 0.404), and 9.4% of the ASD group had elevated levels as compared to 0% of the NTCs (p = 0.029). No significant correlation was found between blood serum lactate levels and MRS-derived Lac+ levels.</p><p><strong>Limitations: </strong>A cautious interpretation of our results is warranted due to a p value of 0.028. In addition, a higher than anticipated proportion of data sets had to be excluded due to poor spectral quality.</p><p><strong>Conclusion: </strong>This study confirms the presence of elevated cerebral Lac+ levels in a subgroup of adults with ASD, suggesting the potential of lactate as a biomarker for mitochondrial dysfunction in a subgroup of ASD. The lower-than-expected prevalence (20% was expected) and moderate increase require further investigation to elucidate the underlying mechanisms and relationships with mitochondrial function.</p>\",\"PeriodicalId\":18733,\"journal\":{\"name\":\"Molecular Autism\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10655272/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Autism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13229-023-00577-y\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Autism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13229-023-00577-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
摘要
简介:自闭症谱系障碍(ASD)包括具有不同表型和病因的异质群体。确定致病亚群有助于有针对性的治疗。一个有希望的途径是研究能量代谢,因为线粒体功能障碍与ASD的一个亚群有关。乳酸作为能量代谢异常的指标,可能作为该亚群的潜在生物标志物。本研究旨在检测高功能成人ASD患者的脑乳酸(Lac+)水平,并假设与神经正常对照组(ntc)相比,Lac+的平均浓度升高。材料与方法:采用磁共振波谱法(MRS)对71例成人ASD合并NTC患者的脑组织Lac+进行研究,重点观察后扣带皮层(PCC)。质量控制后,64名ASD和58名NTC参与者保留。Lac+水平高于对照组平均值两个标准差被认为升高。结果:ASD组平均PCC Lac+水平显著高于NTC组(p = 0.028;Cohen’s d = 0.404),与0%的ntc相比,9.4%的ASD组的水平升高(p = 0.029)。血清乳酸水平与mrs衍生Lac+水平无显著相关性。局限性:由于p值为0.028,对我们的结果进行谨慎的解释是必要的。此外,由于光谱质量差,必须排除比预期比例更高的数据集。结论:本研究证实了成人ASD亚组中存在升高的脑Lac+水平,提示乳酸盐可能作为ASD亚组中线粒体功能障碍的生物标志物。低于预期的患病率(预计为20%)和适度增长需要进一步调查,以阐明潜在的机制及其与线粒体功能的关系。
Increased cerebral lactate levels in adults with autism spectrum disorders compared to non-autistic controls: a magnetic resonance spectroscopy study.
Introduction: Autism spectrum disorder (ASD) encompasses a heterogeneous group with varied phenotypes and etiologies. Identifying pathogenic subgroups could facilitate targeted treatments. One promising avenue is investigating energy metabolism, as mitochondrial dysfunction has been implicated in a subgroup of ASD. Lactate, an indicator of energy metabolic anomalies, may serve as a potential biomarker for this subgroup. This study aimed to examine cerebral lactate (Lac+) levels in high-functioning adults with ASD, hypothesizing elevated mean Lac+ concentrations in contrast to neurotypical controls (NTCs).
Materials and methods: Magnetic resonance spectroscopy (MRS) was used to study cerebral Lac+ in 71 adults with ASD and NTC, focusing on the posterior cingulate cortex (PCC). After quality control, 64 ASD and 58 NTC participants remained. Lac+ levels two standard deviations above the mean of the control group were considered elevated.
Results: Mean PCC Lac+ levels were significantly higher in the ASD group than in the NTC group (p = 0.028; Cohen's d = 0.404), and 9.4% of the ASD group had elevated levels as compared to 0% of the NTCs (p = 0.029). No significant correlation was found between blood serum lactate levels and MRS-derived Lac+ levels.
Limitations: A cautious interpretation of our results is warranted due to a p value of 0.028. In addition, a higher than anticipated proportion of data sets had to be excluded due to poor spectral quality.
Conclusion: This study confirms the presence of elevated cerebral Lac+ levels in a subgroup of adults with ASD, suggesting the potential of lactate as a biomarker for mitochondrial dysfunction in a subgroup of ASD. The lower-than-expected prevalence (20% was expected) and moderate increase require further investigation to elucidate the underlying mechanisms and relationships with mitochondrial function.
期刊介绍:
Molecular Autism is a peer-reviewed, open access journal that publishes high-quality basic, translational and clinical research that has relevance to the etiology, pathobiology, or treatment of autism and related neurodevelopmental conditions. Research that includes integration across levels is encouraged. Molecular Autism publishes empirical studies, reviews, and brief communications.