饮食能量限制延缓衰老的机制。

IF 2.5 4区 医学 Q2 PATHOLOGY Pathology International Pub Date : 2023-12-01 Epub Date: 2023-11-17 DOI:10.1111/pin.13387
Isao Shimokawa
{"title":"饮食能量限制延缓衰老的机制。","authors":"Isao Shimokawa","doi":"10.1111/pin.13387","DOIUrl":null,"url":null,"abstract":"<p><p>Moderate restriction of dietary energy intake, referred to here as dietary restriction (DR), delays aging and extends lifespan in experimental animals compared with a diet of ad libitum feeding (AL) control animals. Basic knowledge of the mechanisms underlying the effects of DR could be applicable to extending the healthspan in humans. This review highlights the importance of forkhead box O (FoxO) transcription factors downstream of the growth hormone-insulin-like growth factor 1 signaling in the effects of DR. Our lifespan studies in mice with heterozygous Foxo1 or Foxo3 gene knockout indicated differential roles of FoxO1 and FoxO3 in the tumor-inhibiting and life-extending effects of DR. Subsequent studies suggested a critical role of FoxO3 in metabolic and mitochondrial bioenergetic adaptation to DR. Our studies also verified hypothalamic neuropeptide Y (Npy) as a vital neuropeptide showing pleiotropic and sexually dimorphic effects for extending the healthspan in the context of nutritional availability. Npy was necessary for DR to exert its effects in male and female mice; meanwhile, under AL conditions, the loss of Npy prevented obesity and insulin resistance only in female mice. Overnutrition disrupts FoxO- and Npy-associated metabolic and mitochondrial bioenergetic adaptive processes, causing the acceleration of aging and related diseases.</p>","PeriodicalId":19806,"journal":{"name":"Pathology International","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms underlying retardation of aging by dietary energy restriction.\",\"authors\":\"Isao Shimokawa\",\"doi\":\"10.1111/pin.13387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Moderate restriction of dietary energy intake, referred to here as dietary restriction (DR), delays aging and extends lifespan in experimental animals compared with a diet of ad libitum feeding (AL) control animals. Basic knowledge of the mechanisms underlying the effects of DR could be applicable to extending the healthspan in humans. This review highlights the importance of forkhead box O (FoxO) transcription factors downstream of the growth hormone-insulin-like growth factor 1 signaling in the effects of DR. Our lifespan studies in mice with heterozygous Foxo1 or Foxo3 gene knockout indicated differential roles of FoxO1 and FoxO3 in the tumor-inhibiting and life-extending effects of DR. Subsequent studies suggested a critical role of FoxO3 in metabolic and mitochondrial bioenergetic adaptation to DR. Our studies also verified hypothalamic neuropeptide Y (Npy) as a vital neuropeptide showing pleiotropic and sexually dimorphic effects for extending the healthspan in the context of nutritional availability. Npy was necessary for DR to exert its effects in male and female mice; meanwhile, under AL conditions, the loss of Npy prevented obesity and insulin resistance only in female mice. Overnutrition disrupts FoxO- and Npy-associated metabolic and mitochondrial bioenergetic adaptive processes, causing the acceleration of aging and related diseases.</p>\",\"PeriodicalId\":19806,\"journal\":{\"name\":\"Pathology International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathology International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/pin.13387\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathology International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/pin.13387","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

适度限制饮食能量摄入,这里称为饮食限制(DR),在实验动物中,与随意喂养(AL)对照动物的饮食相比,可以延缓衰老并延长寿命。关于DR影响的基本机制知识可用于延长人类的健康寿命。这篇综述强调了叉头盒O (FoxO)转录因子在dr效应中的重要性。我们对Foxo1杂合或Foxo3基因敲除小鼠的寿命研究表明,Foxo1和Foxo3在dr的肿瘤抑制和寿命延长作用中起着不同的作用。随后的研究表明Foxo3在dr的代谢和线粒体生物能量适应中起着关键作用证实下丘脑神经肽Y (Npy)是一种重要的神经肽,在营养可用性的情况下显示出多效性和两性二态效应,可以延长健康寿命。Npy是DR在雌雄小鼠中发挥作用所必需的;同时,在AL条件下,Npy的缺失仅在雌性小鼠中预防肥胖和胰岛素抵抗。营养过剩破坏FoxO-和npy相关的代谢和线粒体生物能量适应过程,导致衰老和相关疾病的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanisms underlying retardation of aging by dietary energy restriction.

Moderate restriction of dietary energy intake, referred to here as dietary restriction (DR), delays aging and extends lifespan in experimental animals compared with a diet of ad libitum feeding (AL) control animals. Basic knowledge of the mechanisms underlying the effects of DR could be applicable to extending the healthspan in humans. This review highlights the importance of forkhead box O (FoxO) transcription factors downstream of the growth hormone-insulin-like growth factor 1 signaling in the effects of DR. Our lifespan studies in mice with heterozygous Foxo1 or Foxo3 gene knockout indicated differential roles of FoxO1 and FoxO3 in the tumor-inhibiting and life-extending effects of DR. Subsequent studies suggested a critical role of FoxO3 in metabolic and mitochondrial bioenergetic adaptation to DR. Our studies also verified hypothalamic neuropeptide Y (Npy) as a vital neuropeptide showing pleiotropic and sexually dimorphic effects for extending the healthspan in the context of nutritional availability. Npy was necessary for DR to exert its effects in male and female mice; meanwhile, under AL conditions, the loss of Npy prevented obesity and insulin resistance only in female mice. Overnutrition disrupts FoxO- and Npy-associated metabolic and mitochondrial bioenergetic adaptive processes, causing the acceleration of aging and related diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pathology International
Pathology International 医学-病理学
CiteScore
4.50
自引率
4.50%
发文量
102
审稿时长
12 months
期刊介绍: Pathology International is the official English journal of the Japanese Society of Pathology, publishing articles of excellence in human and experimental pathology. The Journal focuses on the morphological study of the disease process and/or mechanisms. For human pathology, morphological investigation receives priority but manuscripts describing the result of any ancillary methods (cellular, chemical, immunological and molecular biological) that complement the morphology are accepted. Manuscript on experimental pathology that approach pathologenesis or mechanisms of disease processes are expected to report on the data obtained from models using cellular, biochemical, molecular biological, animal, immunological or other methods in conjunction with morphology. Manuscripts that report data on laboratory medicine (clinical pathology) without significant morphological contribution are not accepted.
期刊最新文献
GATA3 expression in tumor-infiltrating mononuclear inflammatory cells is associated with poor prognostic factors in tubo-ovarian carcinomas. SMARCB1-deficient renal medullary carcinoma with an EML4::ALK fusion gene in a Japanese woman. Ovarian mucinous cystic tumor with an overwhelming fundic gland differentiation. SMARCB1-deficient malignant neoplasm of the pancreas with heterogeneous morphologies that cannot be classified into existing histologic types. Keratin-derived amyloid deposition associated with silicone granuloma in an older adult: Comprehensive analysis using immunohistochemistry, proteomics, and a literature review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1