H. Dere Yelken , M.P. Elci , P.F. Turker , S. Demirkaya
{"title":"健康环境下Omega脂肪酸比例与神经退行性变","authors":"H. Dere Yelken , M.P. Elci , P.F. Turker , S. Demirkaya","doi":"10.1016/j.prostaglandins.2023.106799","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Multiple Sclerosis pose substantial public health challenges. While genetics play a primary role, recent research emphasizes the impact of environmental factors, particularly diet and lifestyle. This study investigates the initiating effects of Omega (ω)− 3 and Omega (ω)− 6 fatty acids on neuroinflammation, potentially contributing to these diseases. Using BV-2 microglial cells, we explored the influence of different </span>fatty acid compositions and ratios on </span>cell viability<span>, cytokine production, morphological changes, and </span></span>lipid peroxidation<span>. Notably, a 2/1 ω-6:ω-3 ratio led to decreased cell viability. Fatty acid compositions influenced cytokine secretion, with reduced TNF-α suggesting anti-inflammatory effects. IL-17 increased, while IL-4 and IL-10 decreased in the 15/1 ω-6:ω-3 ratio, indicating complex cytokine interactions. This study found that polyunsaturated fatty acids interventions induced microglial activation, altering cell morphology even without immunostimulants. These findings demonstrate the intricate nature of fatty acid interactions with microglial cells and their potential implications for neuroinflammation. Further research is needed to clarify mechanisms and their relevance to neurodegenerative diseases, informing possible therapeutic strategies.</span></p></div>","PeriodicalId":21161,"journal":{"name":"Prostaglandins & other lipid mediators","volume":"170 ","pages":"Article 106799"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Omega fatty acid ratios and neurodegeneration in a healthy environment\",\"authors\":\"H. Dere Yelken , M.P. Elci , P.F. Turker , S. Demirkaya\",\"doi\":\"10.1016/j.prostaglandins.2023.106799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Multiple Sclerosis pose substantial public health challenges. While genetics play a primary role, recent research emphasizes the impact of environmental factors, particularly diet and lifestyle. This study investigates the initiating effects of Omega (ω)− 3 and Omega (ω)− 6 fatty acids on neuroinflammation, potentially contributing to these diseases. Using BV-2 microglial cells, we explored the influence of different </span>fatty acid compositions and ratios on </span>cell viability<span>, cytokine production, morphological changes, and </span></span>lipid peroxidation<span>. Notably, a 2/1 ω-6:ω-3 ratio led to decreased cell viability. Fatty acid compositions influenced cytokine secretion, with reduced TNF-α suggesting anti-inflammatory effects. IL-17 increased, while IL-4 and IL-10 decreased in the 15/1 ω-6:ω-3 ratio, indicating complex cytokine interactions. This study found that polyunsaturated fatty acids interventions induced microglial activation, altering cell morphology even without immunostimulants. These findings demonstrate the intricate nature of fatty acid interactions with microglial cells and their potential implications for neuroinflammation. Further research is needed to clarify mechanisms and their relevance to neurodegenerative diseases, informing possible therapeutic strategies.</span></p></div>\",\"PeriodicalId\":21161,\"journal\":{\"name\":\"Prostaglandins & other lipid mediators\",\"volume\":\"170 \",\"pages\":\"Article 106799\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prostaglandins & other lipid mediators\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1098882323000965\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prostaglandins & other lipid mediators","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1098882323000965","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Omega fatty acid ratios and neurodegeneration in a healthy environment
Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Multiple Sclerosis pose substantial public health challenges. While genetics play a primary role, recent research emphasizes the impact of environmental factors, particularly diet and lifestyle. This study investigates the initiating effects of Omega (ω)− 3 and Omega (ω)− 6 fatty acids on neuroinflammation, potentially contributing to these diseases. Using BV-2 microglial cells, we explored the influence of different fatty acid compositions and ratios on cell viability, cytokine production, morphological changes, and lipid peroxidation. Notably, a 2/1 ω-6:ω-3 ratio led to decreased cell viability. Fatty acid compositions influenced cytokine secretion, with reduced TNF-α suggesting anti-inflammatory effects. IL-17 increased, while IL-4 and IL-10 decreased in the 15/1 ω-6:ω-3 ratio, indicating complex cytokine interactions. This study found that polyunsaturated fatty acids interventions induced microglial activation, altering cell morphology even without immunostimulants. These findings demonstrate the intricate nature of fatty acid interactions with microglial cells and their potential implications for neuroinflammation. Further research is needed to clarify mechanisms and their relevance to neurodegenerative diseases, informing possible therapeutic strategies.
期刊介绍:
Prostaglandins & Other Lipid Mediators is the original and foremost journal dealing with prostaglandins and related lipid mediator substances. It includes basic and clinical studies related to the pharmacology, physiology, pathology and biochemistry of lipid mediators.
Prostaglandins & Other Lipid Mediators invites reports of original research, mini-reviews, reviews, and methods articles in the basic and clinical aspects of all areas of lipid mediator research: cell biology, developmental biology, genetics, molecular biology, chemistry, biochemistry, physiology, pharmacology, endocrinology, biology, the medical sciences, and epidemiology.
Prostaglandins & Other Lipid Mediators also accepts proposals for special issue topics. The Editors will make every effort to advise authors of the decision on the submitted manuscript within 3-4 weeks of receipt.