1.6-基于己二醇的深度共晶溶剂及其无限稀释下的多余数据

Lindokuhle Manyoni, Gan Redhi
{"title":"1.6-基于己二醇的深度共晶溶剂及其无限稀释下的多余数据","authors":"Lindokuhle Manyoni,&nbsp;Gan Redhi","doi":"10.1016/j.ctta.2022.100088","DOIUrl":null,"url":null,"abstract":"<div><p>For over two decades, deep eutectic solvents have offered pre-eminence characteristics with the purpose of improving the issues of both ionic liquids and traditional solvents. The affordability, ease of preparation, in-flammability, non-or low toxicity, biodegradability, and other environmental advantages of DESs make them more appealing as green solvents. In the present study, 1-ethyl-1-methylpyrrolidinium bromide, a hydrogen bond accepter (HBA), was paired with 1,6-hexanediol (1,6-HDO), a hydrogen bond donor (HBD), to produce a DES with a mole ratio of 1:2. With the use of gas liquid chromatography (GLC), the infinite dilution activity coefficients (IDACs) of 32 different solutes were measured at different temperatures (313.15–343.15) K and atmospheric pressures. The partial molar properties, i.e., enthalpy, entropy, and Gibbs free energy, were calculated from the IDAC values at a reference temperature of T = 313.15 K to give more details for molecular interaction interpretation. Lastly, the selectivity and capacity values of separation problems such as benzene/acetone, benzene/cyclohexane, and cyclohexane/acetone were calculated from the IDAC values. The investigated DES was discovered to have good performance and could be used in industrial processes such as petroleum distillation, separation, extraction, and so on.</p></div>","PeriodicalId":9781,"journal":{"name":"Chemical Thermodynamics and Thermal Analysis","volume":"8 ","pages":"Article 100088"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667312622000542/pdfft?md5=32b52287ee62fe8ce93ef52c73d7d481&pid=1-s2.0-S2667312622000542-main.pdf","citationCount":"0","resultStr":"{\"title\":\"1.6-Hexanediol based deep eutectic solvent and their excess data at infinite dilution\",\"authors\":\"Lindokuhle Manyoni,&nbsp;Gan Redhi\",\"doi\":\"10.1016/j.ctta.2022.100088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For over two decades, deep eutectic solvents have offered pre-eminence characteristics with the purpose of improving the issues of both ionic liquids and traditional solvents. The affordability, ease of preparation, in-flammability, non-or low toxicity, biodegradability, and other environmental advantages of DESs make them more appealing as green solvents. In the present study, 1-ethyl-1-methylpyrrolidinium bromide, a hydrogen bond accepter (HBA), was paired with 1,6-hexanediol (1,6-HDO), a hydrogen bond donor (HBD), to produce a DES with a mole ratio of 1:2. With the use of gas liquid chromatography (GLC), the infinite dilution activity coefficients (IDACs) of 32 different solutes were measured at different temperatures (313.15–343.15) K and atmospheric pressures. The partial molar properties, i.e., enthalpy, entropy, and Gibbs free energy, were calculated from the IDAC values at a reference temperature of T = 313.15 K to give more details for molecular interaction interpretation. Lastly, the selectivity and capacity values of separation problems such as benzene/acetone, benzene/cyclohexane, and cyclohexane/acetone were calculated from the IDAC values. The investigated DES was discovered to have good performance and could be used in industrial processes such as petroleum distillation, separation, extraction, and so on.</p></div>\",\"PeriodicalId\":9781,\"journal\":{\"name\":\"Chemical Thermodynamics and Thermal Analysis\",\"volume\":\"8 \",\"pages\":\"Article 100088\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667312622000542/pdfft?md5=32b52287ee62fe8ce93ef52c73d7d481&pid=1-s2.0-S2667312622000542-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Thermodynamics and Thermal Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667312622000542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Thermodynamics and Thermal Analysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667312622000542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近二十年来,深共晶溶剂以其卓越的特性改善了离子液体和传统溶剂的问题。DESs的价格合理、易于制备、易燃性、无毒性或低毒、可生物降解性和其他环境优势使其成为更有吸引力的绿色溶剂。本研究将氢键受体(HBA) 1-乙基-1-甲基吡咯烷溴化铵与氢键供体(HBD) 1,6-己二醇(1,6- hdo)配对,得到摩尔比为1:2的DES。采用气液色谱法(GLC)测定了32种不同溶质在不同温度(313.15 ~ 343.15)K和大气压下的无限稀释活度系数(IDACs)。根据参考温度T = 313.15 K下的IDAC值计算了偏摩尔性质,即焓、熵和吉布斯自由能,为分子相互作用的解释提供了更多的细节。最后,根据IDAC值计算了苯/丙酮、苯/环己烷、环己烷/丙酮等分离问题的选择性和容量值。实验结果表明,所研究的DES具有良好的性能,可用于石油的蒸馏、分离、萃取等工业过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
1.6-Hexanediol based deep eutectic solvent and their excess data at infinite dilution

For over two decades, deep eutectic solvents have offered pre-eminence characteristics with the purpose of improving the issues of both ionic liquids and traditional solvents. The affordability, ease of preparation, in-flammability, non-or low toxicity, biodegradability, and other environmental advantages of DESs make them more appealing as green solvents. In the present study, 1-ethyl-1-methylpyrrolidinium bromide, a hydrogen bond accepter (HBA), was paired with 1,6-hexanediol (1,6-HDO), a hydrogen bond donor (HBD), to produce a DES with a mole ratio of 1:2. With the use of gas liquid chromatography (GLC), the infinite dilution activity coefficients (IDACs) of 32 different solutes were measured at different temperatures (313.15–343.15) K and atmospheric pressures. The partial molar properties, i.e., enthalpy, entropy, and Gibbs free energy, were calculated from the IDAC values at a reference temperature of T = 313.15 K to give more details for molecular interaction interpretation. Lastly, the selectivity and capacity values of separation problems such as benzene/acetone, benzene/cyclohexane, and cyclohexane/acetone were calculated from the IDAC values. The investigated DES was discovered to have good performance and could be used in industrial processes such as petroleum distillation, separation, extraction, and so on.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
Isobaric vapour-liquid equilibrium studies for binary systems of a green solvent furfuryl alcohol with aniline and substituted anilines at 101.31 kPa Thermodynamic evaluation of intermolecular interaction selectivity in separation of binary mixtures based on the activity coefficients at infinite dilution Physicochemical and spectroscopic analysis of interactions between aspirin and normal saline at different temperatures Atmospheric implications of aminomethylphosphonic acid promoted binary nucleation of water molecules Solubility determination and thermodynamic modelling of verapamil hydrochloride in methanol-water binary solvent systems from 293.15 K to 323.15 K
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1