{"title":"IRI电子密度分布与垂直入射吸收测量的有效性","authors":"K.V.V Ramana, K.S.R.N Murthy, M Indira Devi, Y.V.P.K Raghava, D.N Madhusudhana Rao","doi":"10.1016/0021-9169(95)00114-X","DOIUrl":null,"url":null,"abstract":"<div><p>The observed discrepancies between A1 absorption meaurements and numerical estimation of the same using IRI electron density profiles are attributed to the assumption made in the Sen-Wyleer generalized magneto-ionic theory that the momentum transfer collision frequency of electrons with neutrals is proportional to the square of the electron thermal speed. Based on Budden's (1985) suggestion that, in the lower thermosphere and mesosphere, the momentum transfer collision frequency is proportional to the electron thermal speed, a generalized magneto-ionic theory has been outlined. The new theory brings experimental measurements of A1 absorption closer to the theoretical deductions based on IRI-90 electron density profiles.</p></div>","PeriodicalId":100754,"journal":{"name":"Journal of Atmospheric and Terrestrial Physics","volume":"58 11","pages":"Pages 1195-1200"},"PeriodicalIF":0.0000,"publicationDate":"1996-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0021-9169(95)00114-X","citationCount":"0","resultStr":"{\"title\":\"Validity of IRI electron density profiles in relation to vertical incidence absorption measurements\",\"authors\":\"K.V.V Ramana, K.S.R.N Murthy, M Indira Devi, Y.V.P.K Raghava, D.N Madhusudhana Rao\",\"doi\":\"10.1016/0021-9169(95)00114-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The observed discrepancies between A1 absorption meaurements and numerical estimation of the same using IRI electron density profiles are attributed to the assumption made in the Sen-Wyleer generalized magneto-ionic theory that the momentum transfer collision frequency of electrons with neutrals is proportional to the square of the electron thermal speed. Based on Budden's (1985) suggestion that, in the lower thermosphere and mesosphere, the momentum transfer collision frequency is proportional to the electron thermal speed, a generalized magneto-ionic theory has been outlined. The new theory brings experimental measurements of A1 absorption closer to the theoretical deductions based on IRI-90 electron density profiles.</p></div>\",\"PeriodicalId\":100754,\"journal\":{\"name\":\"Journal of Atmospheric and Terrestrial Physics\",\"volume\":\"58 11\",\"pages\":\"Pages 1195-1200\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0021-9169(95)00114-X\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Terrestrial Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/002191699500114X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Terrestrial Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/002191699500114X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Validity of IRI electron density profiles in relation to vertical incidence absorption measurements
The observed discrepancies between A1 absorption meaurements and numerical estimation of the same using IRI electron density profiles are attributed to the assumption made in the Sen-Wyleer generalized magneto-ionic theory that the momentum transfer collision frequency of electrons with neutrals is proportional to the square of the electron thermal speed. Based on Budden's (1985) suggestion that, in the lower thermosphere and mesosphere, the momentum transfer collision frequency is proportional to the electron thermal speed, a generalized magneto-ionic theory has been outlined. The new theory brings experimental measurements of A1 absorption closer to the theoretical deductions based on IRI-90 electron density profiles.