AutoGenome:一个用于基因组研究的AutoML工具

Denghui Liu , Chi Xu , Wenjun He , Zhimeng Xu , Wenqi Fu , Lei Zhang , Jie Yang , Zhihao Wang , Bing Liu , Guangdun Peng , Dali Han , Xiaolong Bai , Nan Qiao
{"title":"AutoGenome:一个用于基因组研究的AutoML工具","authors":"Denghui Liu ,&nbsp;Chi Xu ,&nbsp;Wenjun He ,&nbsp;Zhimeng Xu ,&nbsp;Wenqi Fu ,&nbsp;Lei Zhang ,&nbsp;Jie Yang ,&nbsp;Zhihao Wang ,&nbsp;Bing Liu ,&nbsp;Guangdun Peng ,&nbsp;Dali Han ,&nbsp;Xiaolong Bai ,&nbsp;Nan Qiao","doi":"10.1016/j.ailsci.2021.100017","DOIUrl":null,"url":null,"abstract":"<div><p>Deep learning has achieved great successes in traditional fields like computer vision (CV), natural language processing (NLP), speech processing, and more. These advancements have greatly inspired researchers in genomics and made deep learning in genomics an exciting and popular topic. The convolutional neural network (CNN) and recurrent neural network (RNN) are frequently used to solve genomic sequencing and prediction problems, and multiple layer perception (MLP) and auto-encoders (AE) are frequently used for genomic profiling data like RNA expression data and gene mutation data. Here, we introduce a new neural network architecture-the residual fully-connected neural network (RFCN)-and describe its advantage in modeling genomic profiling data. We also incorporate AutoML algorithms and implement AutoGenome, an end-to-end, automated deep learning framework for genomic studies. By utilizing the proposed RFCN architecture, automatic hyper-parameter search, and neural architecture search algorithms, AutoGenome can automatically train high-performance deep learning models for various kinds of genomic profiling data. To help researchers better understand the trained models, AutoGenome can assess the importance of different features and export the most critical features for supervised learning tasks and the representative latent vectors for unsupervised learning tasks. We expect AutoGenome will become a popular tool in genomic studies.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667318521000179/pdfft?md5=cf6b23a0b87a53ab56b10caf93790902&pid=1-s2.0-S2667318521000179-main.pdf","citationCount":"0","resultStr":"{\"title\":\"AutoGenome: An AutoML tool for genomic research\",\"authors\":\"Denghui Liu ,&nbsp;Chi Xu ,&nbsp;Wenjun He ,&nbsp;Zhimeng Xu ,&nbsp;Wenqi Fu ,&nbsp;Lei Zhang ,&nbsp;Jie Yang ,&nbsp;Zhihao Wang ,&nbsp;Bing Liu ,&nbsp;Guangdun Peng ,&nbsp;Dali Han ,&nbsp;Xiaolong Bai ,&nbsp;Nan Qiao\",\"doi\":\"10.1016/j.ailsci.2021.100017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Deep learning has achieved great successes in traditional fields like computer vision (CV), natural language processing (NLP), speech processing, and more. These advancements have greatly inspired researchers in genomics and made deep learning in genomics an exciting and popular topic. The convolutional neural network (CNN) and recurrent neural network (RNN) are frequently used to solve genomic sequencing and prediction problems, and multiple layer perception (MLP) and auto-encoders (AE) are frequently used for genomic profiling data like RNA expression data and gene mutation data. Here, we introduce a new neural network architecture-the residual fully-connected neural network (RFCN)-and describe its advantage in modeling genomic profiling data. We also incorporate AutoML algorithms and implement AutoGenome, an end-to-end, automated deep learning framework for genomic studies. By utilizing the proposed RFCN architecture, automatic hyper-parameter search, and neural architecture search algorithms, AutoGenome can automatically train high-performance deep learning models for various kinds of genomic profiling data. To help researchers better understand the trained models, AutoGenome can assess the importance of different features and export the most critical features for supervised learning tasks and the representative latent vectors for unsupervised learning tasks. We expect AutoGenome will become a popular tool in genomic studies.</p></div>\",\"PeriodicalId\":72304,\"journal\":{\"name\":\"Artificial intelligence in the life sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667318521000179/pdfft?md5=cf6b23a0b87a53ab56b10caf93790902&pid=1-s2.0-S2667318521000179-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence in the life sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667318521000179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in the life sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667318521000179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习在计算机视觉(CV)、自然语言处理(NLP)、语音处理等传统领域取得了巨大成功。这些进步极大地激励了基因组学的研究人员,并使基因组学的深度学习成为一个令人兴奋和流行的话题。卷积神经网络(CNN)和递归神经网络(RNN)常用于解决基因组测序和预测问题,多层感知(MLP)和自编码器(AE)常用于RNA表达数据和基因突变数据等基因组分析数据。在这里,我们介绍了一种新的神经网络架构-残差全连接神经网络(RFCN),并描述了它在建模基因组图谱数据方面的优势。我们还整合了AutoML算法并实现了AutoGenome,这是一个用于基因组研究的端到端自动化深度学习框架。利用提出的RFCN架构、自动超参数搜索和神经架构搜索算法,AutoGenome可以自动训练高性能的深度学习模型,用于各种基因组分析数据。为了帮助研究人员更好地理解训练模型,AutoGenome可以评估不同特征的重要性,并为监督学习任务导出最关键的特征,为无监督学习任务导出具有代表性的潜在向量。我们期待AutoGenome成为基因组研究中的一个流行工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AutoGenome: An AutoML tool for genomic research

Deep learning has achieved great successes in traditional fields like computer vision (CV), natural language processing (NLP), speech processing, and more. These advancements have greatly inspired researchers in genomics and made deep learning in genomics an exciting and popular topic. The convolutional neural network (CNN) and recurrent neural network (RNN) are frequently used to solve genomic sequencing and prediction problems, and multiple layer perception (MLP) and auto-encoders (AE) are frequently used for genomic profiling data like RNA expression data and gene mutation data. Here, we introduce a new neural network architecture-the residual fully-connected neural network (RFCN)-and describe its advantage in modeling genomic profiling data. We also incorporate AutoML algorithms and implement AutoGenome, an end-to-end, automated deep learning framework for genomic studies. By utilizing the proposed RFCN architecture, automatic hyper-parameter search, and neural architecture search algorithms, AutoGenome can automatically train high-performance deep learning models for various kinds of genomic profiling data. To help researchers better understand the trained models, AutoGenome can assess the importance of different features and export the most critical features for supervised learning tasks and the representative latent vectors for unsupervised learning tasks. We expect AutoGenome will become a popular tool in genomic studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial intelligence in the life sciences
Artificial intelligence in the life sciences Pharmacology, Biochemistry, Genetics and Molecular Biology (General), Computer Science Applications, Health Informatics, Drug Discovery, Veterinary Science and Veterinary Medicine (General)
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
15 days
期刊最新文献
Pharmacological profiles of neglected tropical disease drugs DTA Atlas: A massive-scale drug repurposing database Modeling PROTAC degradation activity with machine learning Machine learning proteochemometric models for Cereblon glue activity predictions Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1