人工神经网络溶质地温计

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Applied Computing and Geosciences Pub Date : 2023-11-15 DOI:10.1016/j.acags.2023.100144
Lars H. Ystroem, Mark Vollmer, Thomas Kohl, Fabian Nitschke
{"title":"人工神经网络溶质地温计","authors":"Lars H. Ystroem,&nbsp;Mark Vollmer,&nbsp;Thomas Kohl,&nbsp;Fabian Nitschke","doi":"10.1016/j.acags.2023.100144","DOIUrl":null,"url":null,"abstract":"<div><p>Solute artificial neural network geothermometers offer the possibility to overcome the complexity given by the solute-mineral composition. Herein, we present a new concept, trained from high-quality hydrochemical data and verified by <em>in-situ</em> temperature measurements with a total of 208 data pairs of geochemical input parameters (Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup>, Cl<sup>−</sup>, SiO<sub>2</sub>, and pH) and reservoir temperature measurements being compiled. The data comprises nine geothermal sites with a broad variety of geochemical characteristics and enthalpies. Five sites with 163 samples (Upper Rhine Graben, Pannonian Basin, German Molasse Basin, Paris Basin, and Iceland) are used to develop the ANN geothermometer, while further four sites with 45 samples (Azores, El Tatio, Miavalles, and Rotorua) are used to encounter the established artificial neural network in practice to unknown data. The setup of the application, as well as the optimisation of the network architecture and its hyperparameters, are stepwise introduced. As a result, the solute ANN geothermometer, AnnRG (Artificial neural network Regression Geothermometer), provides precise reservoir temperature predictions (RMSE of 10.442 K) with a high prediction accuracy of R<sup>2</sup> = 0.978. In conclusion, the implementation and verification of the first adequate ANN geothermometer is an advancement in solute geothermometry. Our approach is also a basis for further broadening and refining applications in geochemistry.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"20 ","pages":"Article 100144"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590197423000332/pdfft?md5=44b6e2e297c5c6c3291a38dab912498a&pid=1-s2.0-S2590197423000332-main.pdf","citationCount":"0","resultStr":"{\"title\":\"AnnRG - An artificial neural network solute geothermometer\",\"authors\":\"Lars H. Ystroem,&nbsp;Mark Vollmer,&nbsp;Thomas Kohl,&nbsp;Fabian Nitschke\",\"doi\":\"10.1016/j.acags.2023.100144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Solute artificial neural network geothermometers offer the possibility to overcome the complexity given by the solute-mineral composition. Herein, we present a new concept, trained from high-quality hydrochemical data and verified by <em>in-situ</em> temperature measurements with a total of 208 data pairs of geochemical input parameters (Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup>, Cl<sup>−</sup>, SiO<sub>2</sub>, and pH) and reservoir temperature measurements being compiled. The data comprises nine geothermal sites with a broad variety of geochemical characteristics and enthalpies. Five sites with 163 samples (Upper Rhine Graben, Pannonian Basin, German Molasse Basin, Paris Basin, and Iceland) are used to develop the ANN geothermometer, while further four sites with 45 samples (Azores, El Tatio, Miavalles, and Rotorua) are used to encounter the established artificial neural network in practice to unknown data. The setup of the application, as well as the optimisation of the network architecture and its hyperparameters, are stepwise introduced. As a result, the solute ANN geothermometer, AnnRG (Artificial neural network Regression Geothermometer), provides precise reservoir temperature predictions (RMSE of 10.442 K) with a high prediction accuracy of R<sup>2</sup> = 0.978. In conclusion, the implementation and verification of the first adequate ANN geothermometer is an advancement in solute geothermometry. Our approach is also a basis for further broadening and refining applications in geochemistry.</p></div>\",\"PeriodicalId\":33804,\"journal\":{\"name\":\"Applied Computing and Geosciences\",\"volume\":\"20 \",\"pages\":\"Article 100144\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590197423000332/pdfft?md5=44b6e2e297c5c6c3291a38dab912498a&pid=1-s2.0-S2590197423000332-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing and Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590197423000332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197423000332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

溶质人工神经网络地温计提供了克服溶质矿物组成所带来的复杂性的可能性。在此,我们提出了一个新的概念,通过高质量的水化学数据进行训练,并通过总共208对地球化学输入参数(Na+, K+, Ca2+, Mg2+, Cl−,SiO2和pH)和储层温度测量的原位温度测量进行验证。这些数据包括9个地热点,具有广泛的地球化学特征和焓值。利用5个地点163个样本(上莱茵地堑、潘诺尼亚盆地、德国Molasse盆地、巴黎盆地和冰岛)开发人工神经网络地温计,另外4个地点45个样本(亚速尔群岛、El Tatio、Miavalles和罗托鲁瓦)在实践中遇到已建立的人工神经网络对未知数据的处理。逐步介绍了应用程序的设置,以及网络结构及其超参数的优化。结果表明,溶质人工神经网络回归地温计(AnnRG)能准确预测储层温度,RMSE为10.442 K,预测精度R2 = 0.978。总之,第一个合适的人工神经网络地温计的实现和验证是溶质地温计的一个进步。我们的方法也是进一步扩大和完善地球化学应用的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AnnRG - An artificial neural network solute geothermometer

Solute artificial neural network geothermometers offer the possibility to overcome the complexity given by the solute-mineral composition. Herein, we present a new concept, trained from high-quality hydrochemical data and verified by in-situ temperature measurements with a total of 208 data pairs of geochemical input parameters (Na+, K+, Ca2+, Mg2+, Cl, SiO2, and pH) and reservoir temperature measurements being compiled. The data comprises nine geothermal sites with a broad variety of geochemical characteristics and enthalpies. Five sites with 163 samples (Upper Rhine Graben, Pannonian Basin, German Molasse Basin, Paris Basin, and Iceland) are used to develop the ANN geothermometer, while further four sites with 45 samples (Azores, El Tatio, Miavalles, and Rotorua) are used to encounter the established artificial neural network in practice to unknown data. The setup of the application, as well as the optimisation of the network architecture and its hyperparameters, are stepwise introduced. As a result, the solute ANN geothermometer, AnnRG (Artificial neural network Regression Geothermometer), provides precise reservoir temperature predictions (RMSE of 10.442 K) with a high prediction accuracy of R2 = 0.978. In conclusion, the implementation and verification of the first adequate ANN geothermometer is an advancement in solute geothermometry. Our approach is also a basis for further broadening and refining applications in geochemistry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
期刊最新文献
Revolutionizing the future of hydrological science: Impact of machine learning and deep learning amidst emerging explainable AI and transfer learning Generating land gravity anomalies from satellite gravity observations using PIX2PIX GAN image translation Reconstruction of reservoir rock using attention-based convolutional recurrent neural network Mapping landforms of a hilly landscape using machine learning and high-resolution LiDAR topographic data Evaluating the performances of SVR and XGBoost for short-range forecasting of heatwaves across different temperature zones of India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1