{"title":"纳米颗粒在周围神经再生中的应用综述","authors":"Javed Rabia , Ao Qiang","doi":"10.26599/JNR.2022.9040001","DOIUrl":null,"url":null,"abstract":"<div><p>Nanobiotechnology is an emerging field that has recently been explored for peripheral neural regeneration (PNR). Being a public-health problem, peripheral nerve injuries (PNIs) should be treated by the therapiesthat ensure swift functional recovery. The autologous nerve grafts (standard treatment for PNIs) are rarely available and also cause morbidity and neuroma formation at the harvest site, hence an alternative approach with minimum complications is required for the treatment of serious PNIs. Although nerve guidance conduits (NGCs) provide microenvironment for axonal regeneration but they are as yet imperfect solutions. Nanoparticles (e.g., metallic and metallic oxide nanoparticles) have properties which are interesting to include in biomaterials developed for peripheral nervous system regeneration including potential theranostic function. It is important to get an insight into the fundamental mechanisms of reconstruction of peripheral nerves for clinical translation of pre-clinical outcomes of the use of nanoparticles in PNR. Moreover, the combination of nanotechnological strategies is expected to provide transition from bed to bench-side and beyond to the patients, clinicians, and researchers.</p></div>","PeriodicalId":44709,"journal":{"name":"Journal of Neurorestoratology","volume":"10 1","pages":"Pages 1-12"},"PeriodicalIF":3.1000,"publicationDate":"2022-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2324242622001115/pdfft?md5=376e11adb039babc8eb2a14e40b3a458&pid=1-s2.0-S2324242622001115-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nanoparticles in peripheral nerve regeneration: A mini review\",\"authors\":\"Javed Rabia , Ao Qiang\",\"doi\":\"10.26599/JNR.2022.9040001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nanobiotechnology is an emerging field that has recently been explored for peripheral neural regeneration (PNR). Being a public-health problem, peripheral nerve injuries (PNIs) should be treated by the therapiesthat ensure swift functional recovery. The autologous nerve grafts (standard treatment for PNIs) are rarely available and also cause morbidity and neuroma formation at the harvest site, hence an alternative approach with minimum complications is required for the treatment of serious PNIs. Although nerve guidance conduits (NGCs) provide microenvironment for axonal regeneration but they are as yet imperfect solutions. Nanoparticles (e.g., metallic and metallic oxide nanoparticles) have properties which are interesting to include in biomaterials developed for peripheral nervous system regeneration including potential theranostic function. It is important to get an insight into the fundamental mechanisms of reconstruction of peripheral nerves for clinical translation of pre-clinical outcomes of the use of nanoparticles in PNR. Moreover, the combination of nanotechnological strategies is expected to provide transition from bed to bench-side and beyond to the patients, clinicians, and researchers.</p></div>\",\"PeriodicalId\":44709,\"journal\":{\"name\":\"Journal of Neurorestoratology\",\"volume\":\"10 1\",\"pages\":\"Pages 1-12\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2324242622001115/pdfft?md5=376e11adb039babc8eb2a14e40b3a458&pid=1-s2.0-S2324242622001115-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neurorestoratology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2324242622001115\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurorestoratology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2324242622001115","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Nanoparticles in peripheral nerve regeneration: A mini review
Nanobiotechnology is an emerging field that has recently been explored for peripheral neural regeneration (PNR). Being a public-health problem, peripheral nerve injuries (PNIs) should be treated by the therapiesthat ensure swift functional recovery. The autologous nerve grafts (standard treatment for PNIs) are rarely available and also cause morbidity and neuroma formation at the harvest site, hence an alternative approach with minimum complications is required for the treatment of serious PNIs. Although nerve guidance conduits (NGCs) provide microenvironment for axonal regeneration but they are as yet imperfect solutions. Nanoparticles (e.g., metallic and metallic oxide nanoparticles) have properties which are interesting to include in biomaterials developed for peripheral nervous system regeneration including potential theranostic function. It is important to get an insight into the fundamental mechanisms of reconstruction of peripheral nerves for clinical translation of pre-clinical outcomes of the use of nanoparticles in PNR. Moreover, the combination of nanotechnological strategies is expected to provide transition from bed to bench-side and beyond to the patients, clinicians, and researchers.