基于降维和机器学习的脑血管分叉自动分类

Ibtissam Essadik , Anass Nouri , Raja Touahni , Romain Bourcier , Florent Autrusseau
{"title":"基于降维和机器学习的脑血管分叉自动分类","authors":"Ibtissam Essadik ,&nbsp;Anass Nouri ,&nbsp;Raja Touahni ,&nbsp;Romain Bourcier ,&nbsp;Florent Autrusseau","doi":"10.1016/j.neuri.2022.100108","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a method for the automatic labeling of vascular bifurcations along the Circle of Willis (CoW) in 3D images. Our automatic labeling process uses machine learning as well as dimensionality reduction algorithms to map selected bifurcation features to a lower dimensional space and thereafter classify them. Unlike similar studies in the literature, our main goal here is to avoid a classical registration step commonly applied before resorting to classification. In our approach, we aim to collect various geometric features of the bifurcations of interest, and thanks to dimensionality reduction, to discard the irrelevant ones before using classifiers.</p><p>In this paper, we apply the proposed method to 50 human brain vascular trees imaged via Magnetic Resonance Angiography (MRA). The constructed classifiers were evaluated using the Leave One Out Cross-Validation approach (LOOCV). The experimental results showed that the proposed method could assign correct labels to bifurcations at 96.8% with the Naive Bayes classifier. We also confirmed its functionality by presenting automatic bifurcation labels on independent images.</p></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"2 4","pages":"Article 100108"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277252862200070X/pdfft?md5=b35eea2b6a51fcd0cc0bb4a5bc9143c1&pid=1-s2.0-S277252862200070X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Automatic classification of the cerebral vascular bifurcations using dimensionality reduction and machine learning\",\"authors\":\"Ibtissam Essadik ,&nbsp;Anass Nouri ,&nbsp;Raja Touahni ,&nbsp;Romain Bourcier ,&nbsp;Florent Autrusseau\",\"doi\":\"10.1016/j.neuri.2022.100108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a method for the automatic labeling of vascular bifurcations along the Circle of Willis (CoW) in 3D images. Our automatic labeling process uses machine learning as well as dimensionality reduction algorithms to map selected bifurcation features to a lower dimensional space and thereafter classify them. Unlike similar studies in the literature, our main goal here is to avoid a classical registration step commonly applied before resorting to classification. In our approach, we aim to collect various geometric features of the bifurcations of interest, and thanks to dimensionality reduction, to discard the irrelevant ones before using classifiers.</p><p>In this paper, we apply the proposed method to 50 human brain vascular trees imaged via Magnetic Resonance Angiography (MRA). The constructed classifiers were evaluated using the Leave One Out Cross-Validation approach (LOOCV). The experimental results showed that the proposed method could assign correct labels to bifurcations at 96.8% with the Naive Bayes classifier. We also confirmed its functionality by presenting automatic bifurcation labels on independent images.</p></div>\",\"PeriodicalId\":74295,\"journal\":{\"name\":\"Neuroscience informatics\",\"volume\":\"2 4\",\"pages\":\"Article 100108\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S277252862200070X/pdfft?md5=b35eea2b6a51fcd0cc0bb4a5bc9143c1&pid=1-s2.0-S277252862200070X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277252862200070X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277252862200070X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种在三维图像中沿威利斯圆(Circle of Willis, CoW)自动标记血管分叉的方法。我们的自动标记过程使用机器学习和降维算法将选择的分岔特征映射到较低维空间,然后对它们进行分类。与文献中的类似研究不同,我们这里的主要目标是避免在诉诸分类之前通常应用的经典注册步骤。在我们的方法中,我们的目标是收集感兴趣的分岔的各种几何特征,并且由于降维,在使用分类器之前丢弃不相关的特征。在本文中,我们将该方法应用于磁共振血管造影(MRA)成像的50个人脑血管树。使用Leave One Out交叉验证方法(LOOCV)评估构建的分类器。实验结果表明,该方法与朴素贝叶斯分类器对分岔的正确率为96.8%。我们还通过在独立图像上呈现自动分岔标签来确认其功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic classification of the cerebral vascular bifurcations using dimensionality reduction and machine learning

This paper presents a method for the automatic labeling of vascular bifurcations along the Circle of Willis (CoW) in 3D images. Our automatic labeling process uses machine learning as well as dimensionality reduction algorithms to map selected bifurcation features to a lower dimensional space and thereafter classify them. Unlike similar studies in the literature, our main goal here is to avoid a classical registration step commonly applied before resorting to classification. In our approach, we aim to collect various geometric features of the bifurcations of interest, and thanks to dimensionality reduction, to discard the irrelevant ones before using classifiers.

In this paper, we apply the proposed method to 50 human brain vascular trees imaged via Magnetic Resonance Angiography (MRA). The constructed classifiers were evaluated using the Leave One Out Cross-Validation approach (LOOCV). The experimental results showed that the proposed method could assign correct labels to bifurcations at 96.8% with the Naive Bayes classifier. We also confirmed its functionality by presenting automatic bifurcation labels on independent images.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
期刊最新文献
Editorial Board Contents Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in neurodegenerative diseases Topic modeling of neuropsychiatric diseases related to gut microbiota and gut brain axis using artificial intelligence based BERTopic model on PubMed abstracts Brain network analysis in Parkinson's disease patients based on graph theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1